М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
helena59
helena59
17.10.2022 16:17 •  Геометрия

Найдите площадь ромба, сторона которого равна 10см, а сумма диагоналей—28см?

👇
Ответ:
Lopidon11
Lopidon11
17.10.2022

Площадь ромба можно найти по формуле S = 0,5d₁d₂, где d₁ и d₂ - его диагонали.

Т.к. ромб - это параллелограмм, у которого все стороны равны, то он обладает всеми свойствами параллелограмма, а именно: диагонали ромба точкой пересечения делятся пополам. Значит, полусумма диагоналей равна 28 : 2 = 14 (см).

Свойство ромба: диагонали ромба перпендикулярны. Значит, при пересечении диагоналей ромба получаются 4 прямоугольных треугольника, у которых катеты - половины диагоналей, а гипотенуза - сторона ромба.

Рассмотрим один из прямоугольных треугольников и, применив теорему Пифагора, найдем его катеты.

Пусть один из катетов х см, тогда второй будет равен (14 - х) см. Т.к. сторона ромба равна 10 см, то составим и решим уравнение:

х² + (14 - х)² = 10²,

х² + 196 - 28х + х² - 100 = 0,

2х² - 28х + 96 = 0,

х² - 14х + 48 = 0.

D = (-14)² - 4 · 1 · 48 = 196 - 192 = 4; √4 = 2

х₁ = (14 + 2)/(2 · 1) = 16/2 = 8, х₂ = (14 - 2)/(2 · 1) = 12/2 = 6

Если один из катетов равен 8 см, то второй будет равен 14 - 8 = 6 (см). Тогда диагонали ромба будут равны 16 см и 12 см, а площадь

S = 0,5 · 16 · 12 = 96 (см²)

Если один из катетов равен 6 см, то второй будет равен 14 - 6 = 8 (см). Тогда диагонали ромба будут равны 12 см и 16 см, а площадь

S = 0,5 · 12 · 16 = 96 (см²)

ответ: 96 см².

4,6(33 оценок)
Открыть все ответы
Ответ:
Зте
Зте
17.10.2022
Отрезок ОМ и есть радиус окружности, вписанной в равнобедренный треугольник ABC и он равен 7,5 см.
Тогда по свойству пропорции ОВ = 7,5*17/ 15 = 8,5 см, а высота треугольника ВМ = 7,5 + 8,5 = 16 см.
Синус половинного угла при вершине треугольника равен:
sin (a/2) = 7.5 / 8.5 = 15 / 17, а соs (a/2) = √(1-sin²(a/2)) = √(1-225/289) = 8/17.
Боковая сторона равна а = Н/соs (a/2) = 16 *17/ 8 = 34 см.
Теперь, зная боковую сторону и sin(a/2), находим основание треугольника:
б = АС = 2*а*sin (a/2) = 2*34*(15/17) = 60 см,
Периметр  треугольника равен 2а+б = 2*34+60 = 128 см.
Площадь треугольника равна 1/2*Н*б = 1/2*16*60 = 480 см².
4,5(8 оценок)
Ответ:
katyushakot201
katyushakot201
17.10.2022
Лови 
1) пусть H- основание перпендикуляра опущенного из М на плоскость ЕВК, по гипотенузам и общему катету треугольники МВH,MKH-конгруентны, а значит BH=KH, значит вершина равнобедренного тругольника ВМК лежит на серединном перпендикуляре к ВК, т.е на диагонали ЕP таким образом МH , перпендикулярная всей плоскости ЕВК и прямой ВК в частности принадлежит EMP, вторая прямая перпендикулярная BK- это сама ЕP, по двум прямым, вся плоскость ЕМP перпендикулярна ВК...
2) сторона ВС перпендикулярна АВ и кроме того МА- по условю задачи, значит ВС перпендикулярна всей плоскости МАВ и отрезку МВ в частности, что и доказывает требуемое...
4,4(31 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ