Задача 2.Площадь трапеции вычисляется по формуле a+b/2*h подставляем известные нам значения в формулу получаем 8*(8+b/2)=72
=128+b=144
b=16
Задача 3.
S=kh
Соответственно k=S:h
63:7=9 - средняя линия трапеции
Задача 4.
12*1+b/2=60
1+b=5
b=4
Задача 5
рассмотрим треугольник, образованный высотой, опущенной на основание и наклонной боковой стороной. Он прямоугольный и равнобедренный. Значит высота трапеции равна разнице между основаниями 9-5=4 площадь равна высоте умноженной на полусумму оснований 4 * (9+5)/2 =28
Проведем высоту BD из вершины B на сторону AC - получим прямоугольный треугольник BCD.
Как известно, в равнобедренном треугольнике медиана и высота, проведенные к основанию равны, следовательно:
Найдем высоту BD:
Проведем высоту CE из вершины C на основание AB. Образовавшиеся треугольники BHE и CHD подобные, т.к. угол EBH равен углу CHD как вертикальные углы при прямых BD и CE и углы BEH и CDH равны 90 градусам, т.к. образованы высотами треугольника, следовательно углы EBH и DCH равны.
Треугольники ABD и DCH также подобные, т.к. угол EBH и DCH равны (см. выше) и углы CDH и BEH равны 90 градусам, т.к. образованы высотами треугольника.
Т.к. стороны одного из подобных треугольников пропорциональны сходственным сторонам другого, следовательно:
Задача 1.
S=kh
Соответственно k=S:h
60:12=5 - средняя линия трапеции
Задача 2.Площадь трапеции вычисляется по формуле a+b/2*h подставляем известные нам значения в формулу получаем 8*(8+b/2)=72
=128+b=144
b=16
Задача 3.
S=kh
Соответственно k=S:h
63:7=9 - средняя линия трапеции
Задача 4.
12*1+b/2=60
1+b=5
b=4
Задача 5
рассмотрим треугольник, образованный высотой, опущенной на основание и наклонной боковой стороной. Он прямоугольный и равнобедренный. Значит высота трапеции равна разнице между основаниями 9-5=4
площадь равна высоте умноженной на полусумму оснований 4 * (9+5)/2 =28