В доказательство ненужно ответа
Объяснение:
И так,чтобы AO было равно ОВ нужно доказать, что треугольники равны.
1) угол АОС = углу ДОБ(я просто с русского пишу), так как они вертикальные (свойство вертикальных углов)
2)Треугольники равны по двум углам и стороне между ними
3) Раз треугольники равны, следовательно
напротив равных углов лежат равные стороны, следовательно
AO лежит напротив угла С равного углу Д (по условию) напротив которого лежит сторона ОВ. Отсюда АО = ОВ и следовательно точка О центр сторон.
В доказательство ненужно ответа
Объяснение:
И так,чтобы AO было равно ОВ нужно доказать, что треугольники равны.
1) угол АОС = углу ДОБ(я просто с русского пишу), так как они вертикальные (свойство вертикальных углов)
2)Треугольники равны по двум углам и стороне между ними
3) Раз треугольники равны, следовательно
напротив равных углов лежат равные стороны, следовательно
AO лежит напротив угла С равного углу Д (по условию) напротив которого лежит сторона ОВ. Отсюда АО = ОВ и следовательно точка О центр сторон.
4√3 см²
Объяснение:
Каждая сторона сечения по условию равна 4 см. Найдем площадь по формуле Герона
S=√(p(p-a)(p-b)(p-c)=√(6*2*2*2)=√48=4√3 см²