М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Dyrochka22
Dyrochka22
12.08.2022 19:38 •  Геометрия

№3. Все плоские углы при вершине S пирамиды SABCD равны 60°. Около этой пирамиды описан конус с радиусом основания √3 и вершиной S. На меньшей дуге BC, окружности основания конуса, выбрана точка P. Найдите расстояние от точки P до плоскости SAB, если объём пирамиды SABPCD наибольший.

👇
Ответ:
anative
anative
12.08.2022
ответ:

OP_1=1 ед.

Объяснение:

Конус описан около четырёхугольной пирамиды по условию. SA=SB=SC=SD, как образующие конуса.

⇒ Боковые грани данной четырёхугольной пирамиды - равные равнобедренные треугольники

SA=SB=SC=SD и все плоские углы при вершине S составляют по 60^{\circ} каждый.

Так как боковые грани равны ⇒ AB=BC=CD=DA

⇒ четырёхугольник ABCD - квадрат

(Поясню, почему четырёхугольник ABCD не может быть ромбом. Есть теорема и звучит она так : если четырёхугольник можно вписать в окружность, то сумма его противоположных углов равна 180^{\circ}. Ромб - это параллелограмм, у которого противоположные углы равны. Поэтому если противоположные равны 120^{\circ}, к примеру, то их сумма \neq 180^{\circ}. Значит, ромб нельзя вписать в окружность)

=======================================================

⇒ данная четырёхугольная пирамида - правильная.

Значит, её боковые грани - равносторонние треугольники, т.к. углы при вершине S составляют по 60^{\circ} каждый.

Из всех четырёхугольников, вписанных в окружность, наибольшая площадь у квадрата.

Также из прямоугольных треугольников с равной гипотенузой, наибольшая площадь у равнобедренного.

Найдём, при каком положении точки P площадь основания наибольшая. Это будет середина дуги BC.

Значит, площадь пятиугольника ABPCD будет наибольшей.

Тогда объём пятиугольной пирамиды SABPCD будет тоже наибольшим.

Обозначим на грани SAB точку P_1.

Так как точка P по отношению к грани SAB также расположена, как и точка O \RightarrowOP_1 - расстояние от точки

Радиус конуса равен половине диагонали BD квадрата ABCD.

\Rightarrow BD=BO\cdot 2=\sqrt{3}\cdot2=2\cdot\sqrt{3}=2\sqrt{3} ед.

BD=AB\cdot \sqrt{2} \Rightarrow AB=BD:\sqrt{2}=2\sqrt{3}:\sqrt{2}=\sqrt{6} ед.

Так как боковые грани данной четырёхугольной пирамиды - равносторонние треугольники и они включают в себя по одной стороне основания данной пирамиды ⇒ SA=SB=SC=SD=\sqrt{6} ед.

\triangle SOB - прямоугольный, т.к. SO - высота.

Найдём высоту SO пирамиды SABCD по теореме Пифагора:

SO=\sqrt{SB^2-OB^2}=\sqrt{(\sqrt{6})^2-(\sqrt{3})^2}=\sqrt{6-3}=\sqrt{3} ед.

Проведём апофему SH на сторону основания AB данной пирамиды. Т. P_1 \in SH, т.к. \triangle SOH - прямоугольный, а OP_1 - высота данного треугольника.

OH=\dfrac{1}{2}AB=\dfrac{\sqrt{6}}{2} ед.

Найдём апофему SH по теореме Пифагора:

SH=\sqrt{SO^2+OH^2}=\sqrt{(\sqrt{3})^2+\Big(\dfrac{\sqrt{6}}{2}\Big)^2}=\dfrac{3\sqrt{2}}{2} ед.

Рассмотрим \triangle SHO и \triangle OP_1H :

\angle SHO - общий.

\angle SOH=\angle HP_1O=90^{\circ}

\Rightarrow \triangle SHO \sim \triangle OP_1H (по II признаку подобия треугольников).

\Rightarrow \dfrac{OH}{SH}=\dfrac{P_1H}{OH} \Rightarrow \dfrac{\dfrac{\sqrt{6}}{2}}{\dfrac{3\sqrt{2}}{2}}=\dfrac{P_1H}{\dfrac{\sqrt{6}}{2}} \\ \\ \sqrt{6}\cdot P_1H=\sqrt{3} \\ \\ P_1H=\dfrac{\sqrt{2}}{2}

Теперь найдём OP_1 по теореме Пифагора:

OP_1=\sqrt{OH^2-P_1H^2}=\sqrt{\Big(\dfrac{\sqrt{6}}{2}\Big)^2-\Big(\dfrac{\sqrt{2}}{2}\Big)^2}=1 ед.


№3. Все плоские углы при вершине S пирамиды SABCD равны 60°. Около этой пирамиды описан конус с ради
4,7(24 оценок)
Открыть все ответы
Ответ:
hatidzemustafaeva
hatidzemustafaeva
12.08.2022

Пусть ABC - равнобедренный

∟B = 120 °, АС = 18 см, АК - высота.  

В ΔАВС проведем высоту BD к основанию АС.  

По свойству равнобедренного треугольника BD - биссектриса и медиана

AD = DC = 1 / 2AC = 18: 2 = 9 (см) (BD - медиана).  

∟AВD = ∟DBC = 1 / 2∟В = 120 °: 2 = 60 ° (BD - биссектриса).  

Рассмотрим ΔABD - прямоугольный (∟D = 90 °, BD - высота):  

∟BAD + ∟ABD = 90 °; ∟BAD = 30 °; ∟BAD = ∟BCD = 30 ° (ΔABC - равнобедренный).  

Рассмотрим ΔАКС (∟К = 90 °, АК - высота):  

АК - катет, лежащий напротив угла 30 °, тогда АК = 1 / 2АС; АК = 18: 2 = 9 (см).

ответ: Высота AK= 9 см

4,4(68 оценок)
Ответ:
crasheftf
crasheftf
12.08.2022

Дано :

ΔАВС — прямоугольный (∠С = 90°).

∠А = 60°.

АВ + короткий катет = 9 см.

Найти :

∠В = ?

Короткий катет = ?

В прямоугольном треугольнике сумма острых углов равна 90°.

Следовательно, ∠А + ∠В = 90° ⇒ ∠В = 90° - ∠А = 90° - 60° = 30°.

В треугольнике против меньшего угла лежит меньшая сторона.

Так как ∠В — самый меньший угол в ΔАВС, то АС (катет, лежащий напротив этого угла) самая меньшая сторона, соответственно и есть короткий катет.

Тогда нам нужно найти АС.

В прямоугольном треугольнике против угла в 30° лежит катет, равный половине гипотенузы.

Следовательно, АС = \frac{1}{2}*АВ или АВ = 2*АС.

Составим уравнение —

АВ + АС = 9 см

2*АС + АС = 9 см

3*АС = 9 см

АС = 3 см.

30° ; 3 см.


Один из острых углов прямоугольного треугольника равен 60°, а сумма короткого катета и гипотенузы ра
4,6(41 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ