Окружности ω1 и ω2 касаются окружности Ω в точках A и B соответственно. Из точки A проведены касательные к ω2, из точки B проведены касательные к ω1. Окружность γ1 касается касательных из точки A, а также ω1 в точке C. Окружность γ2 касается касательных из точки B, а также ω2 в точке D. X и Y — точки пересечения общих внешних и внутренних касательных к ω1 и ω2 соответственно. Точки Z1 и Z2 — центры гомотетии с отрицательным коэффициентом, переводящие Ω в ω1 и ω2 соответственно. Какие тройки точек лежат на одной прямой? A,C,X B,D,Y B,D,Z2 A,B,X A,Y,Z1 B,Y,Z1 A,Y,Z2 B,Y,Z2 X,Z1,Z2 Y,Z1,Z2
ема «Площади многоугольников» является неотъемлемой частью школьного курса математики, что вполне естественно. Ведь исторически само возникновение геометрии связано с потребностью сравнения земельных участков той или иной формы. Вместе с тем следует отметить, что образовательные возможности раскрытия этой темы в средней школе используются далеко не полностью.
Основная задача обучения математике в школе заключается в обеспечении прочного и сознательного овладения учащимися системой математических знаний и умений, необходимых в повседневной жизни и трудовой деятельности каждому члену современного
Когда мы продолжили стороны до пересечения - мы получили большой треугольник, и маленький. Их площади отличаются на площадь трапеции. Так как основания трапеции параллельны, мы можем утверждать, что большой и маленький треугольники подобны (по трем углам). Известно, что у подобных треугольников площади относятся как квадрат коэффициента подобия (а коэффициент подобия нам дан, это 3/5). Площади относятся как 9 к 25 (так как (3/5)^2 = 9/25), а площадь большого треугольника равна 49. Значит у маленького площадь равна 25. У трапеции площадь равна разности двух этих площадей: 50 - 18 = 32
ема «Площади многоугольников» является неотъемлемой частью школьного курса математики, что вполне естественно. Ведь исторически само возникновение геометрии связано с потребностью сравнения земельных участков той или иной формы. Вместе с тем следует отметить, что образовательные возможности раскрытия этой темы в средней школе используются далеко не полностью.
Основная задача обучения математике в школе заключается в обеспечении прочного и сознательного овладения учащимися системой математических знаний и умений, необходимых в повседневной жизни и трудовой деятельности каждому члену современного