Пусть первая сторона будет 5х тогда вторая сторона будет - х.
Так как у параллелограмма противоположные стороны одниковые. Тогда выходит такое уровнения х+х+х5+х5=144
12х=144
х=144/12
х=12-вторая сторона
Первая сторона=х5=5*12=60
Так как у параллелограмма противоположные стороны одниковые. Тогда 1 сторона=противоположной и 2 сторона=противоположной
1) Если все боковые стороны (это рёбра) пирамиды имеют одинаковую длину, то их проекции на основание - радиусы R описанной окружности вокруг основания.
Радиус равен половине диагонали основания.
R = √(3² + 4²) = 5 см.
Тогда высота Н пирамиды равна:
Н = √(13² - 5²) = √(169 - 25) = 12 см.
2) Будем считать, что в задании имеется в виду, что высота пирамиды проецируется на основание в вершину прямого угла.
Тогда 2 боковых грани пирамиды вертикальны, одна - наклонная.
Гипотенуза основания равна √(9² + 12²) = 15 см.
Высота основания на гипотенузу равна (9*12)/15 = (36/5) = 7,2 см.
Высота наклонной боковой грани равна √(8² + 7,2²) = 0,8√181 ≈ 10,7629 см.
Теперь можно определить площади боковых граней.
Sбок = (1/2) *(6*8 + 12*8 + 15*(4/5)√181) = (72 + 6√181) см².
Площадь основания Sо = (1/2)(9*12) = 54 см².
Полная площади пирамиды равна 54 + 72 + 6√181 = 126 + 6√181 см².
Объём пирамиды равен (1/3)*54*8 = 144 см³.
ответ S LCKF=8√3 (ед²)
Объяснение:
фигура, площадь которой нам нужно найти - это ромб. Его площадь вычисляется по формуле: S=1/2×d1×d2, где d1 и d2 - диагонали ромба, которые нам нужно будет найти для вычисления площади. У правильного шестиугольника есть свойства: его меньшая диагональ=а×√3- где а- сторона шестиугольника, а большая диагональ=2а. Меньшей диагональю является: АС=BF=FD=FC=2√3×√3=2×3=6
Проведём большую диагональ FС. FС=2√3×2=4√3
FC является большей диагональю шестиугольника и диагональю ромба LCKF
Диагональ FC и стороны шестиугольника AF, AB и ВС образовали равнобедренную трапецию FABC, где АВ и FC - основания, FA и ВС - боковые стороны, а BF и АС - её диагонали. В трапеции основания пропорциональны друг другу и диагонали пропорциональны с таким же коэффициентом. Вычислим этот коэффициент. Мы знаем, что АВ=2√3, а FС=4√3:
Тогда части диагонали АС также будут иметь такие же пропорции: AL/LC=1/2
обозначим этот коэффициент как х и 2х, и зная, что АС=6, составим уравнение:
х+2х=6
3х=6
х=6÷3=2
Итак: АL=2, тогда LC=2×2=4
LC=FL=CK=FK=4 и они являются сторонами ромба LCDF. Проведём в ромбе вторую диагональ LK и обозначим точку пересечения диагоналей О. Диагонали ромба пересекаясь делятся пополам, образуя 4 равных прямоугольных треугольника, поэтому FO=CO=4√3÷2=2√3
Рассмотрим ∆FLO. В нём FO и LO- катеты, а FL - гипотенуза. Найдём LO=KO по теореме Пифагора:
LО²=FL²–FO²=4²–(2√3)²=16–4×3=16–12=4; LO=KO=√4=2, тогда LK=2×2=4
Так как мы наши диагонали теперь, найдём площадь ромба: