Трапеция ABCD вписанный ( АВ||CD , AB>CD ). Вписанный окружность треугольника АВС пересекает на АВ и АС в точках М и N соответственно. Докажите что R лежат на линии MN ( R - центр вписанной окружности трапеции ABCD, I - центр вписанной окружности треугольника АВС )
Втреугольнике сумма углов равна 180° запишем эту истину для треугольника авс ∠а+∠в+∠с=180° то же самое - для треугольника амс ∠1/2 а+ ∠1/2 с+ ∠амс=180° но по условию ∠амс=3∠в, поэтому ∠1/2 а+ ∠1/2 с+ 3∠в=180° из треугольника авс ∠а +∠с=180 -∠в найдем сумму половин углов а и с (∠а +∠с): 2=(180°-∠в): 2 подставим значение суммы половин углов а и с в уравнение для треугольника амс (180° -∠в): 2 + 3∠в=180° умножим обе стороны уравнения на 2, чтобы избавиться от дроби: 180° -∠в +6∠в=360° 5∠в=180° ∠в=180°: 5=36°
Пусть O - центр данной окружности и AB - ее хорда. Обозначим через x1/5 угловой величины меньшей из дуг с концами в точках A и B. Тогда величина большей из дуг равна 7x, а так как объединение этих двух дуг есть полная окружность, 5x + 7x = 360°, откуда x = 30°. Следовательно, величина меньшего из углов AOBравна 150°, а тогда из рассмотрения равнобедренного треугольника ABO получаем, что угол BAO равен 15°. Касательная к окружности, проходящая через точку A, перпендикулярна радиусу OA и, следовательно, образует с хордой AB угол 75°.
Объяснение:Трапеция ABCD вписанный ( АВ||CD , AB>CD