1. АА₁ - биссектриса,
ВВ₁ - медиана,
СС₁ - высота.
2. АВ = СВ,
∠АВЕ = ∠СВЕ,
ВЕ - общая сторона.
ΔАВЕ = ΔСВЕ по 1 признаку (по двум сторонам и углу между ними).
3. ∠ВАС = 180° - ∠1 по свойству смежных углов.
∠ВАС = 180° - 110° = 70°.
В равнобедренном треугольнике углы при основании равны, значит
∠ВСА = ВАС = 70°
∠BDC = 90°, так как в равнобедренном треугольнике медиана, проведенная к основанию, является высотой.
4. ОМ = ОК по условию,
∠DMO = ∠BKO по условию,
∠DOM = ∠BOK как вертикальные, значит
ΔDMO = ΔBKO по стороне и двум прилежащим к ней углам.
В равных треугольниках напротив равных сторон лежат равные углы, значит ∠MDO = ∠KBO, а так же OD = OB.
Треугольник DOB равнобедренный, значит углы при основании равны:
∠ODB = ∠OBD.
∠MDB = ∠MDO + ∠ODB
∠KBD = ∠KBO + ∠OBD, а так как ∠MDO = ∠KBO и ∠ODB = ∠OBD, то
∠MDB = ∠KBD, т.е. ∠D = ∠B
ответ: два решения (одно для остроугольного треугольника, другое для тупоугольного...)
1) Р = 256 (см)
2) Р = 56V21 (см)
Объяснение: треугольник АВС, основание ВС=2а (чтобы не возиться с дробями); АВ=АС=b
P = 2a+2b = 2(a+b)
а=b*cos(B); по т.синусов: b=2R*sin(B)
S = 2a*h/2 = ah; h = b*sin(B)
S = P*r/2 = (a+b)*r
(a+b)*r = ab*sin(B)
b(1+cos(B))*r = b*b*sin(B)*cos(B)
(1+cos(B))*r = 2R*sin^2(B)*cos(B)
r/(2R) = (1-cos(B))*cos(B)
обозначим х=cos(B)
x^2 - x + (6/25) = 0
(5x)^2 - 5*(5x) + 6 = 0
по т.Виета корни (3) и (2)
5х=3 ---> х = 0.6
---> sin(B) = V(1-0.36) = 0.8 или
5х=2 ---> х = 0.4
---> sin(B) = V(1-0.16) = 0.2V21
b = 2*50*0.8 = 80 или
b = 2*50*0.2V21 = 20V21
a = 80*0.6 = 48 или
а = 20V21*0.4 = 8V21
P = 2*(80+48) = 128*2 = 256 или
Р = 2*(20+8)*V21 = 56V21