Параллелограмм АВСД. Противоположные стороны парраллелограмма равны по определению, т.е. АВ=СД и АД=ВС.
1случай АВ+ВС+СД=42. 2АВ+ВС=42
По условию АВ+ВС+СД+ДА=46. 2АВ+2ВС=46
Система из двух уравнений: 2АВ+ВС=42 (1)
2АВ+2ВС=46 (2)
Из (1) выразить ВС: ВС=42-2АВ
Подставим во второе: 2АВ+84-4АВ=46. -2АВ=-38. АВ=19
ПОдставим результат в (1): 38+ВС=42. ВС=4
ответ: АВ=СД=19. ВС=АД=4
2случай. ВС+СД+ДА=42. 2АД+СД=42 (1)
2СД+2АД=46 (2)
Из (1) ДС=42-2АД
В (2) 84-4АД+2АД=46
-2АД=-38
АД=19
СД=42-38=4
ответ: АД=ВС=19, АВ=СД=4
1.Пусть одна сторона равна х, тогда другая 6х. У параллелограмма противолежащие стороны равны. Сумма сторон равна 84. Тогда составим уравнение
х+х+6х+6х=84
14х=84
х=84:14
х=6
Тогда 6х=6×6=36
Проверка: 6+6+36+36=84
ответ: 6; 6; 36; 36
2.В прямоугольнике противоположные стороны равны. Значит ВС=АD=18см
BD и АС являются диагоналями прямоугольника ABCD.
Диагонали в прямоугольнике равны, т.е BD=АС=22см
О-точка пересечения диагоналей, которая делит их пополам. Значит ОD=ОА=ОВ=ОС=1/2 BD=11см
Рboc=ОB+ОC+ВC
Рboc=11+11+18=40см
3.диагонали ромба являются биссектрисами его углов (то есть делят их пополам);
сумма соседних углов ромба равна 180°;
противоположные углы ромба равны
4.Диагональ АС делит параллелограмм на 2 подобных треугольника. Углы NAB=PCD, угол ABN=CDP и следовательно углы BNA= СPD, отсюда следует что прямоугольники ABN и CDP также подобны. Следовательно прямые BN и PD равны между собой. Что и требовалось доказать
5.Примем коэффициент отношения AF:FD=a. Тогда AF=a, FD=5a. Их сумма 6а=18 см, ⇒ а=18:6=3 см. Отрезок АF=3 см, отрезок FD=5•3=15 см АВСD - параллелограмм. ВС║AD, CF – секущая. ∠ВСF=∠СFD как накрестлежащие. Но ∠FCD=∠BCF (СF – биссектриса) ⇒ ∠CFD=∠FCD . Углы при основании FC треугольника FDC равны, следовательно, он равнобедренный и CD=FD=15 см ( свойство). Запомним: Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник. Противоположные стороны параллелограмма равны, ⇒ АВ=CD=15 см. Периметр =сумма всех сторон АВСD. Р=2•(18+15)=66 см