1) Вписанные углы - угол, вершина которого лежит на окружности, а обе стороны пересекают эту окружность.
2) Вписанный угол равен половине центрального угла, опирающегося на ту же дугу, и равен половине дуги, на которую он опирается, либо дополняет половину центрального угла до 180°.
3) Угол с вершиной в центре окружности называется центральным углом.
4) Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.
5) 180°
6) Внешние углы - это углы, смежные с углами треугольника.
7) Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.
8) S=1/2 a*hª-треугольник. Площадь параллелограмма равна произведению высоты и стороны, к которой проведена высота.
9)
1) Вписанные углы - угол, вершина которого лежит на окружности, а обе стороны пересекают эту окружность.
2) Вписанный угол равен половине центрального угла, опирающегося на ту же дугу, и равен половине дуги, на которую он опирается, либо дополняет половину центрального угла до 180°.
3) Угол с вершиной в центре окружности называется центральным углом.
4) Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.
5) 180°
6) Внешние углы - это углы, смежные с углами треугольника.
7) Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.
8) S=1/2 a*hª-треугольник. Площадь параллелограмма равна произведению высоты и стороны, к которой проведена высота.
9)
Так как PQRS — квадрат, PQ = QR = RS = SP ⇒ PA = QB = RC = SD, AQ = BR = CS = DP; ∠P = ∠Q = ∠R = ∠S = 90°.
Прямоугольные треугольники APD, BQA, CRB, DSC равны по двум катетам ⇒ AB = BC = CD = DA ⇒ ABCD — ромб; ∠PDA = ∠QAB, ∠PDA + ∠PAD = 90° ⇒ ∠QAB + ∠PAD = 90° ⇒ ∠DAB = 180° - (∠QAB + ∠PAD) = 90°.
В ромбе ABCD ∠A = ∠C = 90°, ∠B = ∠D = 180° - 90° = 90°. AB = BC = CD = DA, ∠A = ∠B = ∠C = ∠D = 90° ⇒ ABCD — квадрат.