Рисунок к заданию во вложении
По рисунку,
Дано:
флагшток, тросс и расстояние от точки основания флагштока до места крепления троса на земле, составляют прямоугольный треугольник, где:
флагшток (b) - катет
расстояние от основания до места крепления (а) - катет
тросс (с) - гипотенуза
флагшток, закрепленный вертикально, перпендикулярен земле угол, между а и b = 90°.
Найти: длину катета а.
Решение: по теореме Пифагора:
c²=a²+b²
a=√(c²-b²)
c=6.5 м
b=6.3 м
a=√(6.5²-6.3²) м
a=√2.56 м
a=1.6 м
ответ: расстояние от точки основания флагштока до места крепления троса на земле равно 1.6 м
у треугольников AOS, BOS, COS, DOS, одна сторона OS, также равны стороны AO=BO=CO=DO и так как OS перпендикулярна плоскости квадрата, значит OS перпендикулярна всем прямым лежащим в этой плоскости. Таким образом углы AOS, BOS, COS, DOS также равны между собой и равны 90 градусов.
Поэтому треугольники AOS, BOS, COS, DOS равны по правилу равенства двух сторон и угла между ними. А отсюда следует, что углы SAO, SBO, SCO, SDO также равны между собой. Следовательно углы, образуемые прямыми SA, SB, SC,SD с плоскостью квадрата равны между собой.
если периметр квадрата равен 32 см, то сторона квадрата равна 32/4=8 см.
если сторона квадрата равна 8 см, то его диагонали AC и BD равны √(8²+8²)=√(64+64)=8√2 см.
так как в квадрате диагонали точкой пересечения делятся на равные отрезки, то AO=(8√2)/2=4√2 см.
Так как треугольник AOS прямоугольный, то тангенс угла SA равен OS/AO = 4√2 / 4√2 = 1 см.
Если тангенс угла равен 1, то этот угол равен 45 градусов.
Следовательно углы, образуемые прямыми SA, SB, SC,SD с плоскостью квадрата равны 45 градусов.
Объяснение:
Так как говорится катеты, то становится понятно что они образуют угол в вершине С