раз площади ∆ADC и ∆CDB относятся как 1 :3, то отрезки AD и DB тоже относятся как 1 :3 (так как у этих треугольников одна высота) AD/DB = 1/3 ∆ACD подобен ∆CDB (высота в прямоугольном треугольнике, проведенная к гипотенузе делит треугольник на два подобных) <A = <DCB (сходственные углы подобных треугольников) обозначим СВ как х тогда tgA = CD/AD = x/1 tgDCB = DB/CD = 3/x раз углы равны, то tgA = tgDCB x/1 = 3/x x^2 = 3 x = √3 tgA = x/1 = √3
<A = arctg(tgA) = 60 ° <B = 180 - 90 - <A = 30° ну а <C у нас прямой по условию
раз площади ∆ADC и ∆CDB относятся как 1 :3, то отрезки AD и DB тоже относятся как 1 :3 (так как у этих треугольников одна высота) AD/DB = 1/3 ∆ACD подобен ∆CDB (высота в прямоугольном треугольнике, проведенная к гипотенузе делит треугольник на два подобных) <A = <DCB (сходственные углы подобных треугольников) обозначим СВ как х тогда tgA = CD/AD = x/1 tgDCB = DB/CD = 3/x раз углы равны, то tgA = tgDCB x/1 = 3/x x^2 = 3 x = √3 tgA = x/1 = √3
<A = arctg(tgA) = 60 ° <B = 180 - 90 - <A = 30° ну а <C у нас прямой по условию
B=A/3, C=B/3
A+A/3+B/3=A+A/3+(A/3)/3=180°
A+A/3+(A/3)/3=A+A/3+A/9=(13/9)A
(13/9)A=180°
A=125°=>B=125°/3=41°=>C=41°/3=14°
А=125°, В=41°, С=14°, а как найти стороны если известно 3 угла я нинаю