Теорема 1 (первый признак равенства треугольников — по двум сторонам и углу между ними)
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Теорема 2 (второй признак равенства треугольников — по стороне и двум прилежащим углам)
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Теорема 3 (третий признак равенства треугольников — по трем сторонам)
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Ра́диус (лат. radius — спица колеса, луч) — отрезок, соединяющий центр окружности (или сферы) с любой точкой, лежащей на окружности (или поверхности сферы), а также длина этого отрезка. Окру́жность — замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра), лежащей в той же плоскости, что и кривая. Диаметр окружности является хордой, проходящей через её центр; такая хорда имеет максимальную длину. Хо́рда — отрезок, соединяющий две точки данной кривой (например, окружности, эллипса, параболы). Круг – множество точек плоскости, удаленных от заданной точки этой плоскости на расстояние, не превышающее заданное (радиус круга).
Теорема 1 (первый признак равенства треугольников — по двум сторонам и углу между ними)
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Теорема 2 (второй признак равенства треугольников — по стороне и двум прилежащим углам)
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Теорема 3 (третий признак равенства треугольников — по трем сторонам)
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Объяснение: