На стороне bc параллелограмма abcd выбраны точки p и q так,что bp=pq=oc,отрезки aq и dp пересекаются в точке m и площадь δpmq равна 1 см^2.найдите а)плошадь δamd: б)площадь параллелограмма abcd. перекину 35 )
АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
1.Найти радианную меру угла, если его градусная мера равна- 10°, 30°, 150°.
радианная - z
градусная - g
g/180 = z/π
z = g·π/180
z₁ = 10*π/180 = π/18
z₂ = 30*π/180 = π/6
z₃ = 150*π/180 = 5π/6
2. Найти градусную меру угла, если его радианная мера равна: п/5, 2п/3, 7п/6.
g = 180*z/π
g₁ = 180/5 = 36°
g₂ = 180*2/3 = 120°
g₃ = 180*7/6 = 210°
3.Найти длину дуги окружности, радиуса 2см, отвечающей центральному углу 60°.
l = π·r·g/180
l = π*2*60/180 = 2π/3 ≈ 2,094 см
Вариант II
1.Найти радианную меру угла, если его градусная мера равна- 20°, 50°, 160°.
z₁ = 20*π/180 = π/9
z₂ = 50*π/180 = 5π/18
z₃ = 160*π/180 = 8π/9
2. Найти градусную меру угла, если его радианная мера равна: п/8, 3п/2, 5п/4.
g₁ = 180/8 = 22,5°
g₂ = 180*3/2 = 270°
g₃ = 180*5/4 = 225°
3.Найти длину дуги окружности, радиуса 3см, отвечающей центральному углу 80°.
l = π·r·g/180
l = π*3*80/180 = 4π/3 ≈ 4,189 cм