5. угол АВD = 45°
угол DBC = 45°
угол ВАD = 45°
угол BCD = 45°
угол BDA = 90°
угол BDC = 90°
Объяснение:
5. 1) ТК АВ = ВС, то ∆АВС - р/б;
2) ТК ∆АВС - р/б => высота ВD, проведённая к основанию, является биссектрисой и медианой => угол АBD = угол DBC и AD = DC.
3) ТК АD = DC,
DB - общ.
Угол ADB = угол ВDC (BD -высота) => ∆ BDA = ∆ BDC по 1 признаку равенства треугольников => угол DAB = угол CDB
4) ТК угол АBD = угол DBC и угол DAB = угол CDB, то угол АВD = угол DBC = угол ВАD = угол BCD = 180° (сумма углов треугольника равна 180°) – 90° / 2 = 45°
В условии ошибка: ВС ║AD, а не АС, так как параллельные прямые не могут проходить через одну точку.
BF = DE по условию,
∠AED = ∠CFB по условию,
∠CBF = ∠ADE как накрест лежащие при пересечении параллельных прямых ВС и AD секущей BD, ⇒
ΔCBF = ΔADE по стороне и двум прилежащим к ней углам.
Значит CF = AE,
BE = BF - EF, DF = DE - EF, а так как BF = DE, то и BE = DF,
∠CFD = ∠AEB как смежные с равными углами (∠AED = ∠CFB по условию),
значит ΔCFD = ΔAEB по двум сторонам и углу между ними.
Тогда ∠АВЕ = ∠CDF, а эти углы - накрест лежащие при пересечении прямых АВ и CD секущей BD, значит АВ║CD.
углы 56 2/3° 56 2/3° 66 2/3°
Объяснение:
так как треугольник равнобедренный то углы у его основания раны, а сумма всех углов равна 180⁰
составим уравнение
2х+х+10=180
3х=180-10
3х=170
х=170/3
х=56 2/3°
угол при основании равен 56 2/3°
а у вершины 56 2/3+10= 66 2/3°