Дуже іть багато ів діагоналі прямокутної трапеції поділяє її середню лінію на відрізки 9 і 14 знайдіть площу трапеції якщо її менша бічна сторона 12 см багато ів
Диагональ делит трапецию на два треугольника: ᐃ АВД и ᐃ ВСД В этих треугольниках основания - основания трапеции, а часть средней линии трапеции является средней линией каждого из треугольников соответственно. Так как средняя линия трапеции делится диагональю на отрезки с разностью 2 см, а каждый из них является средней линией треугольников, найдем эти отрезки. Пусть меньший отрезок ( средняя линия треугольника с меньшим основанием ВС) будет х Тогда второй - х+2 х+2+х=10 см ( такова длина средней линии)2 х=8 х=4 см - длина меньшего отрезка. Он равен половине основания ВС ВС=4*2=8 см 4+2=6 см - длина большего отрезка, он равен половине АД АД=6*2=12 см
Требуется по известному объёму шара, равного 36 * π см3, определить площадь поверхности сферы, которая ограничивает этот шар.
Как известно, объём шара (V) при известном радиусе R, вычисляется по формуле V = (4/3) * π * R3.
Согласно условия задания, имеем, (4/3) * π * R3 = 36 * π см3, откуда R3 = (36 * π см3) : ((4/3) * π) = 27 см3.
Последнее равенство позволяет определить длину радиуса шара (что тоже самое, длину радиуса сферы, которая ограничивает шар): R = 3 см.
Теперь легко вычислить площадь (S) поверхности сферы по формуле: S = 4 * π * R2 .
Имеем: S = 4 * π * R2 = 4 * π * (3 см)2 = 4 * π * 9 см2 = 36 * π см2 .
ответ: 36 * π см2.