Одна из сторон прямоугольника в 2 раза больше чем другая. биссектриса одного из углов прямоугольника отсекает от него треугольник площадь которого равно 18 см квадратных. найдите площадь прямоугольника
1. гипотенузу найдем по теореме Пифагора C^2=√5^2+2^2=5+4=9 C=3 см
2. катет найдем по теореме Пифагора А^2=2^2-√3^2=4-3=1 A=1 см
3. в прям-ом тр-ке, согласно теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов, поэтому гипотенуза больше любого из катетов. В данном случае АС является гипотенузой, поэтому противолежащий ей угол В является прямым.
4. В равностороннем тр-ке высота, проведенная к любой стороне, является также его медианой и биссектрисой, и поэтому делит тр-к на два равных прямоугольных тр-ка с углами 30°, 60°, 90°. Катет, противолежащий углу 30°, равен половине гипотенузы. Обозначим его через х, тогда гипотенуза равна 2х. Найдем неизвестные стороны по теореме Пифагора, решив уравнение с одним неизвестным. √3^2=(2x)^2-x^2=4x^2-x^2=3x^2 3=3x^2 x^2=3/3 x=1 2x=2 ответ: 2
5. обозначим один катет 5х, другой 12х, гипотенуза 26. Применим теорему Пифагора, решим уравнение с одним неизвестным 26^2=(5x)^2+(12x)^2 676=25x^2+144x^2 676=169x^2 x^2=4 x=2 Значит катеты тр-ка равны 10 см и 24 см. Периметр тр-ка равен 26+10+24=60 см
В задании фигура с указанными координатами неправильно названа - это параллелограмм. В любом случае диагональю фигуру разбить на 2 треугольника, Искомая площадь равна сумме двух треугольников. Треугольник АВС Точка А Точка В Точка С Ха Уа Хв Ув Хс Ус 2 -2 8 -4 8 8 Длины сторон: АВ ВС АС 6.32455532 12 11.66190379 Периметр Р = 29.98646, p = 1/2Р = 14.99323, Площадь определяем по формуле Герона: S = 36.
Треугольник АСД Точка А Точка С Точка Д Ха Уа Хс Ус Хд Уд 2 -2 8 8 2 10 АС СД АД 11.6619038 6.32455532 12 Периметр Р = 29.99, р = /2Р = 4.99 Площадь определяем по формуле Герона: S = 36. Итого площадь фигуры равна 36 + 36 = 72 кв.ед.
C^2=√5^2+2^2=5+4=9
C=3 см
2. катет найдем по теореме Пифагора
А^2=2^2-√3^2=4-3=1
A=1 см
3. в прям-ом тр-ке, согласно теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов, поэтому гипотенуза больше любого из катетов. В данном случае АС является гипотенузой, поэтому противолежащий ей угол В является прямым.
4. В равностороннем тр-ке высота, проведенная к любой стороне, является также его медианой и биссектрисой, и поэтому делит тр-к на два равных прямоугольных тр-ка с углами 30°, 60°, 90°. Катет, противолежащий углу 30°, равен половине гипотенузы. Обозначим его через х, тогда гипотенуза равна 2х. Найдем неизвестные стороны по теореме Пифагора, решив уравнение с одним неизвестным.
√3^2=(2x)^2-x^2=4x^2-x^2=3x^2
3=3x^2
x^2=3/3
x=1
2x=2
ответ: 2
5. обозначим один катет 5х, другой 12х, гипотенуза 26. Применим теорему Пифагора, решим уравнение с одним неизвестным
26^2=(5x)^2+(12x)^2
676=25x^2+144x^2
676=169x^2
x^2=4
x=2
Значит катеты тр-ка равны 10 см и 24 см. Периметр тр-ка равен 26+10+24=60 см