Все грани правильной пирамиды - равнобедренные треугольники.
Так как плоский угол при вершине равен 60º, то грани данной пирамиды - правильные треугольники, все её ребра равны.
Пусть ребро данной пирамиды равно а.
Тогда диагональ основания ( квадрата АВСД) равна а√2, а ее половина а:√2.
Площадь боковой поверхности равна сумме площадей её граней -четырех правильных треугольников со стороной а
Площадь правильного треугольника найдем по формуле
S=a²√3):4
Тогда площадь боковой поверхности
4S=a²√3
Рассмотрим треугольник АОМ.
Угол АОМ=90º, АО=АС/2=а:√2
По т.Пифагора
MO² =АМ²-AO²
16=а² -а²/2⇒
а²=32
4S=32√3 см² - площадь боковой поверхности.
угол а = 90 градусов, угол в = 60 градусов, тогда угол с = 30 градусов, так как сумма углов треугольника всегда 180 градусов. Напротив меньшего угла всегда лежит меньшая сторона, значит меньший катет лежит напротив угла в 30 градусов. Так же известно, что катет лежащий напротив угла в 30 градусов равен половине гипотенузы. Из этого всего составляем уравнение, обозначив гипотенузу через х:
х - 0.5х = 4
0.5х = 4
х = 4/0.5
х = 8
Гипотенуза = 8, катет равен половине гипотенузы, то есть 4.
Проверяем, 8 - 4 = 4, как и сказано в условии
ответ: гипотенуза =8 см, катет = 4 см.
Объяснение: