М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
larsab
larsab
18.01.2023 06:06 •  Геометрия

Сциркуля и линейки постройте угол равный 120 градусов!

👇
Ответ:
artem443090
artem443090
18.01.2023

Постройте прямоугольный треугольник с гипотенузой, вдвое большей меньшего катета,(по свойству катета, противолежащего углу 30 градусов)

Острый угол при этом катете будет 60 градусов, а смежный с ним угол равен 120 градусам. 

Как строить такой прямоугольный треугольник, думаю, знаете. 

К прямой провести перпендикуляр, на горизонтальной стороне от основания перпендикуляра отложить катет - отрезок проивольной длины.Обозначить его точкой. Из этой точки раствором циркуля, равным удвоенной величине отложенного катета, провести окружность. Точка пересечения этой дуги с перпендикуляром будет третьей вершиной треугольника. Соедините эту точку с точкой на горизонтальной прямой - получите внешний угол, равный 120 градусо. 

4,7(77 оценок)
Открыть все ответы
Ответ:
Kara2006kara
Kara2006kara
18.01.2023
8.1 Площадь равнобедренной трапеции равна:
S=(a+b)/2*h, где
a и b - основания трапеции (11 и 27)
h - высота
Отсюда, высота равна:
h=S:(a+b)/2=2S:(a+b)=2*285:(11+27)=225:38=15
Т.е. BE (см. рисунок 1) = 15
AE=FD=(27-11):2=16:2=8
По теореме Пифагора:
AB²=BE²+AE²=15²+8²=225+64=289
AB=√289=17
Боковая сторона трапеции равна 17. Т.к. трапеция равнобедренная, то боковые стороны равны: AB=CD=17
Периметр — это сумма боковых сторон и оснований, который равен:
Р=11+27+17+17=72
ответ: периметр равен 72.

8.2. Найти высоту правильного треугольника, если радиус описанной около него окружности, равен 10 см.

R=10

т.к. ΔАВС - равносторонний, следовательно ∠А=∠В=∠С=60°

R=a/2sin60=a/√3 

тогда a=R√3=10√3

h=√3/2*a=√3*a/2=√3*10√3/2=√9*10/2=3*10/2=15
ответ: высота правильного треугольника равна 15

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках Mи Nсоответственно. Найдите BN, если MN=13, AC=65, NC=28.
Пусть х - длина ВN.
Тогда, ВС=х+32
Составим и решим пропорцию:
MN:AC=BN:BC
 17/51=х/(х+32) (умножим на 51, чтобы избавиться от дроби)
17=51х/(х+32)
17*(x+32)=51x
17x+544=51x
17x-51x=-544
-34x=-544
34x=544
x=16
ответ: BN=16

8.1 площадь равнобедренной трапеции равна 285. найдите периметр этой трапеции, если ее основания рав
4,8(27 оценок)
Ответ:
natashalixarev
natashalixarev
18.01.2023

Жили да были два треугольника. Один - равносторонний, у которого все стороны были одинаковой длины, сам он был весь правильный, симметричный, его очень часто школьники использовали, чтобы изучать доказательства теорем и решать геометрические задачи, другой - с разными сторонами, весь "кривенький", неправильный, некрасивый, неровный, вышагивал он, прихрамывая и получая насмешки от другого треугольника. Надо упомянуть, что, несмотря на все это, площадь обоих треугольников высчитывать по одной формуле: по формуле Герона (кроме того, для каждого из них, индивидуально: для равностороннего - по формуле S = (a² * √3)/4, где a – сторона треугольника, для произвольного - S = c²/(2 * (ctg∠α * ctg∠β)) или S = (c² * sin∠α * sin∠β)/2 * sin(∠α + ∠β)).

Несмотря на общее - то, что они оба были треугольниками - и различия в их мировоззрениях и формах, оба они обладали совершенно разными характерами. Первый был самоуверенным, себялюбивым и гордым. Другой знал себе цену, не слишком много о себе задумываясь, в то же время, его характер более покладистый и уравновешенный, - по-видимому, компенсация за непропорциональную внешность.

У первого треугольника, пусть его зовут Найс - была очень легкая жизнь. Он мало рассуждал о ней, жил, ни о чем не заботясь. Другой - Гуд - был очень вдумчивым, часто размышлял о смысле существования и старался улучшить ее. Эти двое не слишком ладили, но и не вздорили. У каждого был свой круг друзей - Найс дружил с правильными фигурами, - кубом, октаэдром, додекаэдром, пентагональном икоситетраэдром.. . Гуд уживался со всеми фиграми советом, пользой всем тем, чем мог. Он был дорб по натуре.

Оба треугольника жили в тетрадке у девочки, которая училась в пятом классе и любила геометрию. Она часто рисовала оба треугольника, когда решала задачи. А еще она их рисовала на классной доске.

Можно было бы сказать о том, что оба они прожили довольно длинную (до конца 36-листовой тетрадки) нормальную жизнь любого треугольника, вот только один из треугольников рисовался чаще другого, впрочем особого значения этот факт не имеет. Оба треугольника недолюбливали ластик - он мог их стереть начисто, что случалось не так часто. У треугольников была ровная, спокойная жизнь. Она бал окрашена разными цветами красок - в том случае, если эти фигуры попадали в поле деятельности девочки на уроках рисования. Но это уже другая история.. . Там треугольники сливались с окружающими фигурами и теряли свои формы, переставая быть треугольниками. У каждого из них были, конечно, свои привычки, любимые цвета, любое время дня и вечера.. . но это мало интересно кому-либо, кроме них самих, и можно не рассказывать об этих подробностях. Мы вспоминаем о треугольниках, когда видим предметы архитектуры, когда видим другие вещи такой формы. Вот тогда и пригодится рассказ о треугольниках.

4,8(75 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ