ВОТ
Объяснение:
Радиус перпендикулярен касательной в точке касания. Касательные из одной точки к окружности равны. Отрезки, соединяющие центр окружности и точку, из которой проведены касательные являются биссектрисами углов между этими касательными и углов между радиусами, проведенными к этим касательным в точки касания. Сумма острых углов прямоугольного треугольника равна 90°. Сумма всех углов с вершиной в центре окружности равна 360°. Следовательно:
<NML=2*28=56°, <MNL=2*31=62°, <NLM=180-56-62=62°, <AOM=90-28=62°, <AON=90-31=59°, <NOB=<AON=59°, <MOC=<AOM=62°, <AOC=2*<AOM=124°, <AOB=2*<AON=118°, <COB=360-124-118=118°, <COL=<BOL=<COB:2 = 59°.
Дано:
а = 6 см - меньшее основание трапеции
α = 120° - тупой угол трапеции
γ = 30° - угол между диагональю трапеции и основанием
Найти:
b - большее основание трапеции
β = 180° - α = 180° - 120° = 60° - острый угол трапеции
Поскольку диагональ образует с основаниями угол γ = 30°, то угол ζ между боковой стороной и диагональю равен
ζ = β - γ = 60° - 30° = 30°
Треугольник, образованный диагональю, боковой стороной и меньшим основанием, является равнобедренным, поскольку
угол ζ = углу γ = 30°
Поэтому боковая сторона с равна меньшему основанию а
с = а = 6 см
Тогда проекция cb боковой стороны с на большее основание b равна
сb = c · cos β = 6 · 0.5 = 3 (см)
b = a + 2cb
b = 6 + 2 · 3 = 12 (cм)
Большее основание трапеции 12 см