Треугольник FAC и его ортоцентр - это центр вписанной окружности треугольника ABC
Объяснение: Автор задания не совсем удачно обозначил центры вписанной и описанной окружностей. Обычно центр вписанной окружности - это точка I, центр описанной - точка O.
С разрешения автора буду считать, что центр вписанной окружности - это I. Кстати, картинка не совсем удачная. Дело в том, что, как известно, на одной прямой (прямой Эйлера) находятся центр O описанной окружности, центроид (то есть точка G пересечения медиан) и ортоцентр H. Центр же вписанной окружности лежит на этой прямой только если треугольник равнобедренный. Перехожу к решению.
Каждый из углов тр-ка ABC будем обозначать одной буквой - A, B, C. Значок градуса будем опускать. Из равнобедренного тр-ка EAC имеем: угол ECA=90-(A/2); из равноб. тр-ка ACD имеем: CAD=90-(C/2). Поэтому AFC=(A+C)/2. I лежит на биссектрисе угла BAC, то есть IAC=A/2, откуда DAI=DAC-IAC=90-(A+C)/2. То есть AFC+FAI=90, откуда AI перпендикулярно FC. Аналогично CI перпендикулярно AF. Следовательно, центр вписанной окружности треугольника ABC является по совместительству - ортоцентром треугольника FAC.
Элементы произвольного треугольника ABC обычно обозначаются так: BC, CA, AB — стороны; a, b, c — их длины; α, β, γ — величины противолежащих углов; ha, ma, la — высота, медиана и биссектриса, выходящие из вершины A; R — радиус описанной окружности, r — радиус вписанной окружности; S — площадь, p — полупериметр. Отметим, что в отдельных задачах обозначения могут отличаться от стандартных. Теорема 1 (теорема Пифагора). В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы, то есть c2 = a2 + b2, где c — гипотенуза треугольника.
Теорема 2. Для прямоугольного треугольника (рис. 1) верны следующие соотношения: a = c cos β = c sin α = b tg α = b ctg β,
где c — гипотенуза треугольника.
Теорема 3. Пусть ca и cb — проекции катетов a и b прямоугольного треугольника на гипотенузу c, а h — высота этого треугольника, опущенная на гипотенузу (рис. 2). Тогда справедливы следующие равенства: h2 = ca∙cb, a2 = c∙ca, b2 = c∙cb.
Теорема 4 (теорема косинусов). Для произвольного треугольника справедлива формула a2 = b2 + c2 – 2bc cos α.
Теорема 5. Около всякого треугольника можно описать окружность и притом только одну. Центр этой окружности есть точка пересечения серединных перпендикуляров, проведенных к сторонам. Центр описанной окружности лежит внутри треугольника, если треугольник остроугольный; вне треугольника, если он тупоугольный; на середине гипотенузы, если он прямоугольный (рис. 3).
Теорема 7. Во всякий треугольник можно вписать окружность и притом только одну (рис. 5).
Центр этой окружности есть точка пересечения биссектрис трех углов треугольника. Центр вписанной окружности лежит всегда внутри треугольника.
Теорема 8 (формулы для вычисления площади треугольника).
4
Последняя формула называется формулой Герона.
Теорема 9 (теорема о биссектрисе внутреннего угла).
Биссектриса внутреннего угла треугольника (рис. 6) делит противоположную сторону на части, пропорциональные прилежащим сторонам треугольника, то есть b : c = x : y.
Теорема 10 (формула для вычисления длины биссектрисы) (см. рис. 6)
.
Теорема 11 (формула для вычисления длины биссектрисы).
Теорема 12. Медианы треугольника пересекаются в одной точке и делятся в этой точке на отрезки, длины которых относятся как 2 : 1, считая от вершины (рис. 7).
Теорема 13 (формула для вычисления длины медианы).
Доказательства некоторых теорем
Доказательство теоремы 10. Построим треугольник ABC и проведем в нем биссектрису AD (рис. 8). Пусть CD = x и DB = y. Применим к треугольникам ABD и ACD теорему косинусов:
BD2 = AB2 + AD2 – 2∙AB∙AD∙cos ∠BAD; CD2 = AC2 + AD2 – 2∙AC∙AD∙cos ∠CAD. Или, что то же самое,
Выразим из каждого неравенства и приравняем полученные результаты:
Применив теперь к треугольнику ABC теорему о биссектрисе внутреннего угла, получим, что
Объяснение:
Треугольник FAC и его ортоцентр - это центр вписанной окружности треугольника ABC
Объяснение: Автор задания не совсем удачно обозначил центры вписанной и описанной окружностей. Обычно центр вписанной окружности - это точка I, центр описанной - точка O.
С разрешения автора буду считать, что центр вписанной окружности - это I. Кстати, картинка не совсем удачная. Дело в том, что, как известно, на одной прямой (прямой Эйлера) находятся центр O описанной окружности, центроид (то есть точка G пересечения медиан) и ортоцентр H. Центр же вписанной окружности лежит на этой прямой только если треугольник равнобедренный. Перехожу к решению.
Каждый из углов тр-ка ABC будем обозначать одной буквой - A, B, C. Значок градуса будем опускать. Из равнобедренного тр-ка EAC имеем: угол ECA=90-(A/2); из равноб. тр-ка ACD имеем: CAD=90-(C/2). Поэтому AFC=(A+C)/2. I лежит на биссектрисе угла BAC, то есть IAC=A/2, откуда DAI=DAC-IAC=90-(A+C)/2. То есть AFC+FAI=90, откуда AI перпендикулярно FC. Аналогично CI перпендикулярно AF. Следовательно, центр вписанной окружности треугольника ABC является по совместительству - ортоцентром треугольника FAC.