Удивительно, но эта такая сложная по формулировке задача решается в одно действие. Угол между высотами, выходящими (например, тут полный произвол в обозначениях) из вершин углов A и B; равен 180 - С; Это можно просто сосчитать, как 180 - (90 - A) - (90 - B) = A + B = 180 - C; а можно просто заметить, что четырехугольник, образованный сторонами угла С и высотами (ну кусочками), выходящими из углов A и B, очевидно является вписанным (да даже еще проще - в нем два угла прямых). а можно просто заметить, что у угла С и угла между высотами СТОРОНЫ ПЕРПЕНДИКУЛЯРНЫ. :) Поэтому в обоих треугольниках напротив общей их стороны AB лежат углы, синусы которых равны. Поэтому (по теореме синусов) равны радиусы окружностей, описанных вокруг этих треугольников.
1 Укажите номера верных утверждений.3) Касательная к окружности-это прямая имеющая только одну общую точку с окружностью. 2 Укажите номера верных утверждений. 2) Если три угла одного треугольника соответственно равны трем углам другого треугольника, то такие треугольники подобны. 3) Площадь прямоугольного треугольника равна половине произведения его катетов. 3 Укажите номера верных утверждений. 1) Вертикальные углы равны. 4 Укажите номера верных утверждений. 1) Сумма углов треугольника равна 180 градусов. 2) Площадь круга радиуса R равна лR^2. 3) Средняя линия треугольника равна половине одной из его сторон. 5 Укажите номера верных утверждений. 1) Диагонали ромба делят его углы пополам. 2) Площадь трапеции равна произведению суммы ее оснований на высоту. 3) Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.
Угол между высотами, выходящими (например, тут полный произвол в обозначениях) из вершин углов A и B; равен 180 - С;
Это можно просто сосчитать, как 180 - (90 - A) - (90 - B) = A + B = 180 - C;
а можно просто заметить, что четырехугольник, образованный сторонами угла С и высотами (ну кусочками), выходящими из углов A и B, очевидно является вписанным (да даже еще проще - в нем два угла прямых).
а можно просто заметить, что у угла С и угла между высотами СТОРОНЫ ПЕРПЕНДИКУЛЯРНЫ. :)
Поэтому в обоих треугольниках напротив общей их стороны AB лежат углы, синусы которых равны.
Поэтому (по теореме синусов) равны радиусы окружностей, описанных вокруг этих треугольников.