В решении этой задачи применима теорема Пифагора.
Смотрите рисунок, данный во вложении.
Если продолжить расстояние от точки А - проекции М на прямую α -
на длину расстояния от точки N до ее проекции В,
и соединить конец С этого отрезка с N,
получим прямоугольный треугольник MСN,
в котором известны гипотенуза MN=13 см,
и меньший катет МС=2+3=5 см
Если знаете несколько из Пифагоровых троек, а это как раз такая тройка (13,5,12), то, возможно, догадаетесь, что СN =12 см
По теореме Пифагора:
СN²=MN²- МС²= 169-25=144
СN=12 см
АВ=СN=12 см
ответ: Искомое расстояние равно 12 см
1 Стороны треугольника соединяющего спедины сторон - это средние линии исходного треугольника. Значит они равны половинам сторон исходного. Следовательно периметр (12+14+18)/2=6+7+9=22 см.
В виде дано?
Дан треугольник АВС. АВ=12 см, ВС=14 см, СА=18 см.
М,Н и К. - середины сторон АВ,ВС, и АС.
Найти периметр МНК.
средние линии МН, НК и КН равны 9,6 и 7 см.
Перимет равен 22 см.
2 Периметр - сумма всех сторон, значит сумма параллельных сторон будет равна: периметр минус сумма не параллельных сторон=42. Средняя линия- это сумма параллельных сторон, разделенная на два, значит она равна 42:2=21. ответ: ср.линия равна 21 см.