По одному из свойств касательных, проведённых из одной точки, отмеченные лучи являются биссектрисами углов ∠CBА и ∠EDC соответственно; если углы ∠АВС и ∠CDЕ являются равными, то и образованные биссектрисами углы тоже равны (∠ЕDО=∠ОDС=∠СВО=∠ОВА); получаем ΔDОВ с равными углами ∠ОDВ=∠DВО; что значит, что ΔDОВ - равнобедренный; DO=ВО;
Радиус, проведённый в точку касанияПо свойству такого радиуса проведённый отрезок ОС будет перпендикулярен прямой ВD; те OC - высота ΔDOВ; по свойству равнобедренного треугольника OC является и медианой; значит, СD=СВ;
Отрезки касательныхПо свойству касательных, проведённых из одной точки, отрезки ВС, ВА и DC, DЕ касательных попарно равны (те ВС=ВА и DC=DЕ); мы доказали, что DС=ВС; значит, ВС=ВА=DC=DЕ, ч.и.т.д.
№2Обратные теоремы действенны - нужно доказать тоже самое, только в обратную сторону. Поэтому напишу вкратце.
Если АВ=ВС=CD=DЕ, то при ОС⊥ВD ОВ=ОD (св-ва р/б Δ); тогда при ∠ОDВ=∠DВО и биссектрисах DO и ВО (∠ЕDО=∠ОDС и ∠СВО=∠ОВА) ∠ЕDО=∠ОDС=∠СВО=∠ОВА, ч.и.т.д.
1. Находим координаты вектора АD.
АD = (3-4; -1-1) = (-1;-2)
2. Находим координаты вектора ВС.
ВС = (-3+2; 1-3) = (-1;-2)
Если векторы имеют одинаковые координаты, то они равны. Значит, вектор АD равен вектору ВС.
Вычислите координаты вектора AC+2BC.
1. Находим координаты вектора АС.
АС=(-3-4; 1-1) = (-7; 0)
2. Находим координаты вектора ВС.
ВС=(-3+2; 1-3) = (-1; -2)
3. Находим координаты вектора 2ВС.
2ВС = 2(-1;-2) = (-2;-4)
4. Находим координаты вектора АС+2ВС.
АС+2ВС = (-7;0) + (-2;-4) = (-7-2; 0-4) = (-9;-4)
Вычислите абсолютную величину вектора BC.
|BC| = √((-1)²+(-2)²) = √(1+4) = √5