М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
1939345
1939345
27.06.2021 13:19 •  Геометрия

Основание AB трапеции АВС D равно 12 см, угол A прямой, А D = 5 см, ∠ B = 45°. Найдите длины векторов: а) BD ; б) BC ; в) AC .​

👇
Открыть все ответы
Ответ:
UlianaIvleva
UlianaIvleva
27.06.2021
1) Опустим из А высоту АН. АН=АВ*sin 60º=2√3BH=AB*sin30º=2 
HC=BC-BH=6-2=4
 По т.Пифагора АС=√(АН²+НС²)= √(16+12)=2√7 
Прямоугольные  ∆ ВDС и ∆ АНС подобны по общему острому угу С. BC:AC=BD:AH 
6:2√7=BD:2√3 
BD=12√3:2√7=(6√3):√7 или (6√21):7
-------------
2) Найдем АС как в первом решении. 
Площадь треугольника АВС 
S=AC*BD:2 
S=AH*BC:2
Т.к.площадь одной и той же фигуры, найденная любым одна и та же, приравняем полученные выражения: 
AC*BD:2=AH*BC:2 
(2√7)*BD:2=(2√3)*6:2 
BD=(12√3):(2√7)=(6√3):√7 или (6√21):7
--
АС можно найти и по  т.косинусов,  а площадь  ∆ АВС по формуле S=a*b*sinα:2
Найдите высоту bd треугольника abc,если ab = 4, bc = 6. угол abc =60 градусов
4,5(87 оценок)
Ответ:
LoveSammer
LoveSammer
27.06.2021
Билет № 2
3. В окружность вписан треугольник ABC так, что АВ - диаметр окружности. Найдите углы треугольника, если: а) ВС=134°
АВ - диаметр - > < C=90 < A=67 (вписанный угол) < B=180-90-67=23

Билет № 3
3. Сумма двух противоположных сторон описанного четырехугольника равна 12 см. а радиус вписанной в него окружности равен 5 см. Найдите площадь четырехугольника.
Так как четырехугольник описан вокруг окружности, то сумма других сторон равна 12
S=p*r=(a+b+c+d)*r/2=24*5/2=60

Билет № 4
3. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см. считая от основания. Найдите периметр треугольника.
Дан треугольник ABC. AB=BC. M - точка касания вписанной окружности стороны АВ. N - точка касания вписанной окружности стороны ВC. K - точка касания вписанной окружности стороны АC. AM=3. MB=4.
В соответствии со свойством касательных, проведенных из одной точки к окружности
AM=AK CK=CN BM=BN
P=3+3+4+4+3+3=20

\sqrt[n]{x}
4,6(59 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ