1.
М - середина АВ, значит МВ = АВ/2
Р - середина МВ, значит РВ = МВ/2 = АВ/4
К - середина ВС, значит КС = ВС/2
Е - середина КС, значит ЕС = КС/2 = ВС/4
N - середина АС, значит NA = АС/2
G - середина NA, значит GA = NA/2 = AC/4
По условию
PB + EC + GA = 12
АВ/4 + ВС/4 + АС/4 = 12
1/4 · (АВ + ВС + АС) = 12
АВ + ВС + АС = 12 · 4 = 48 (см)
2.
Из решения первой задачи следует, что
АР = 3/4 АВ
ВЕ = 3/4 ВС
CG = 3/4 AC
По условию
AP + BE + CG = 108
3/4 АВ + 3/4 ВС + 3/4 АС = 108
3/4 · (АВ + ВС + АС) = 108
АВ + ВС + АС = 108 · 4/3 = 144 (см)
1) Дано: АВ ┴ CD, ∟СОК = 42 °, ∟МОК + ∟ВОК = 130 °.
Найти: ∟МОК.
АВ ┴ CD, ∟COB = 90 °, ∟AOC = 90 °.
По аксиомой измерения углов имеем:
∟СОВ = ∟СОК + ∟КОВ, ∟КОВ = ∟СОВ - ∟СОК, ∟КОВ = 90 ° - 42 ° = 48 °.
∟МОК + ∟ВОК = 130 °, ∟МОК = 130 ° - 48 ° = 82 °,
2): ∟MOD.
По условию АВ ┴ CD, тогда ∟АОС = ∟СОВ = 90 °, ∟AOD = 90 °. ∟AOB = 180 °.
По аксиомой измерения углов имеем:
∟МОК + ∟ВОК = ∟MOB - 130 °. ∟АОВ = ∟AOM + ∟MOB, ∟AOM = ∟АОВ - ∟MOB,
∟АОМ = 180 ° - 130 ° = 50 °. ∟MOD = ∟МОА + ∟AOD, ∟MOD = 90 ° 50 ° = 140 °.
Biдповидь: ∟МОК = 82 °, ∟MOD = 140 °.
Объяснение:
24см³
Объяснение:
V = abc = 3*2*4 = 24см³