Дано: а, в – прямые, АВ – секущая,угол 1 и угол 2 – накрест лежащие, угол 1=угол 2. Доказать: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны. Доказательство: Рассмотрим если угол 1= 2угол=90 градусов Отсюда следует, а и в перпендикулярны к прямой АВ и, следовательно, параллельны. Теорема: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
Дано: а, в – прямые, АВ – секущая,угол 1 и угол 2 – накрест лежащие, угол 1=угол 2. Доказать: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны. Доказательство: Рассмотрим если угол 1= 2угол=90 градусов Отсюда следует, а и в перпендикулярны к прямой АВ и, следовательно, параллельны. Теорема: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
44. Больший угол 130°
45. Больший угол 108°
47. Меньший угол 68°
Объяснение:
сумма смежных углов равна 180°
Разность, это когда от большего угла отнимают меньший.
Меньший угол: (180-80)/2 = 50°, больший: 50° + 80°=130°
Меньший угол: (180-36)/2 = 72°, больший: 72 + 36 = 108°
Меньший угол: (180-44)/2 = 68°