Стороны ромба равны, следовательно сторона ромба= 40:4=10 см. Проведем диагональ, противоположную углу в 60 градусов. Имеем равнобедренный треугольник. опустим перпендикуляр на противоположную диагональ. Т.К. треуг. у нас равнобедренный, то он является и биссектрисой, т.е разделил угол 60 градусов пополам. Теперь воспользуемся теоремой, что катет , лежащий против угла в 30 градусов = половине гипотенузы, имеем половина искомой диагонали = 10:2=5, вся диагональ = 10 см. А чертеж просто нарисуй ромб.
Прощадь ромба S = a^2*sin(α) Площадь каждой из трёх равновеликих фигур S = a^2*sin(α)/3 Две фигуры - это треугольники АВЕ и AFD, третья - четырёхугольник AECF Четырёхугольник AECF в свою очередь состоит из двух равных треугольников AEC и ACF Значит площадь треугольника ABE в два раза больше площади треугольника AEC AH - высота для треугольника ABE и треугольника AEC АН = АB*sin(HBA) = AB*sin(BAD) = a*sin(α) Т.к. высота для треугольника ABE и треугольника AEC общая, то их площади относятся как основания треугольников и ВЕ = 2EC = 2/3a По теореме косинусов AE^2 = AB^2 + BE^2 - 2*AB*BE*cos(π-α) = a^2 + 4/9*a^2 + 2*a*2/3*a*cos(α) = 13/9*a^2 + 4/3*a^2*cos(α) = a^2*(13/9 + 4/3*cos(α)) AE = a*(13/9 + 4/3*cos(α))^(1/2)
ответ: вершина малого квадрата делит сторону большего на отрезки, длиною 5 см и 12 см.
Объяснение:
1. Рассмотрим ΔKNA и ΔKBL
1) ∠1 = ∠2
2) ∠KBL = ∠KAN = 90°
3) KN = KL
Следовательно, ΔKNA = ΔKBL по гипотенузе и острому углу
2. Из равентсва следует, что BK = AN, тогда
AB = AK + BK = AK + BK = 17 см
3. Пусть AN = x см, тогда AK = 17 - x см. Составим уравнение, используя теорему Пифагора в ΔKNA:
KN² = AK² + AN²
13² = (17 - x)² + x²
169 = 289 - 34x + x² + x²
2x² - 34x + 120 = 0
x² - 17x + 60 = 0
√D = √(289 - 240) = √49 = 7
x₁ = (17-7)/2 = 5 см
x₂ = (17+7)/2 = 12 см
AN = 5 см ⇒ AK = 17 - 5 = 12 см
или
AN = 12 см ⇒ AK = 5 см