Объяснение:
1
180°-(50°+35°)=95°
2
180°-(65°+40°)=75°
3
(180°-80°):2=50°
4
180°-2*36°=108
5
х+х+20°=90°
2х=90°-20°
2х=70°
х=70°:2
х=35° - первый угол,
35°+20°=55° - второй угол.
6
х+2х=90°
3х=90°
х=90°:3
х=30° - первый угол,
30°*2=60° - второй угол.
7
3+5=8
Такого треугольника не существует.
8
1,3+1,8 > 3
Такой треугольник существует.
9
<A+<B+<C=180°
<A+<C=180°-<B=180°-110°=70°
<OAC+<OCA+<AOC=180°
<OAC+<OCA=1/2(<A+<C)
<AOC=180°- 1/2(<A+<C) =180°- 1/2*70°=145°
10
<A+<B+<C=180°
<B+<C=180°-<A=180°-106°=74°
<OCB+<OBC+<BOC=180°
<OCB+<OBC=1/2(<B+<C)
<BOC=180°- 1/2(<B+<C) =180°- 1/2*74°=143°
11
<2=90°-60°=30°
c=2a
a+2a=18
3a=18
a=18:3
a= 6 см
c=2*6=12 см
12
<2=90°-60°=30°
c=2a
a+2a=42
3a=42
a=42:3
a= 14 см
c=2*14=28 см
См. Объяснение.
Объяснение:
Доказательство.
1) ∠СОА треугольника АСО = ∠ВОD треугольника ОDВ - так как эти углы являются вертикальными (образованы пересечением двух прямых и лежат друг напротив друга).
2) ∠АСО треугольника АСО = ∠ВDО треугольника ОDВ = 90° - согласно условию задачи (АС⊥ α и DB⊥α).
3) Сторона СО треугольника АСО = стороне ОD треугольника ОDВ
Если сторона и два прилежащих к ней угла одного треугольника равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Следовательно, ΔАСО = ΔОDB.
4) В равных треугольниках против равных углов лежат равные стороны.
Сторона АС треугольника АСО и сторона DB треугольника ОDВ лежат против равных углов (∠СОА = ∠ВОD) - значит, АС = DB.
ВЫВОД: так как АС - это кратчайшее расстояние от точки А до прямой α (перпендикуляр является кратчайшим расстоянием) и DB - это также кратчайшее расстояние от точки B до прямой α, то это означает, что точки А и В находятся на одинаковом расстоянии от прямой α.