Задача 1 (рисунок 1).
1) МВ и КВ, МА и ТА, КС и ТС - отрезки касательных, проведённых из одной точки. Они равны по свойству касательных. Следовательно, треугольник АВС разбивается на три пары равных (попарно) отрезков.
PΔАВС=2*2+4*2+6*2=24см.
Задача 2 (рисунок 2).
3:4=3х+4х
По теореме о пересекающихся хордах:
36*3=3х*4х
108=12х²
х=3.
CD=3*7=21см.
Задача 3 (рисунок 3).
Сначала ищем градусную меру дуг АМВ и АСВ.
Если 2 дуги, на которые делит окружность любая хорда, вместе равны 360°, то:
(360-80):2=140° - дуга АСВ.
Тогда дуга АМВ = 140+80=220°. (в сумме 360).
Дальше пользуемся свойствами вписанных и центральных углов:
1) ∠АСВ=150°, ∠АОВ=210° (центральные ∠).
2) ∠АМВ=половине АОВ=75°, ∠АВМ=половине АОМ=90°,
3)∠АСВ=половине АМВ=105° (вписанные углы).
ответ: 210° - ∠АМВ, 90° - ∠АВМ, 105° - ∠АСВ.
Дано:
АВСD - прямоугольник,
АВ = 15 сантиметров,
ВС/СD/DА = 2 /3 /4,
Р авсd = 60 сантиметров.
Найти длины сторон прямоугольника: ВС, СD, DА - ?
1) Рассмотрим прямоугольник АВСD.
Так как Р авсd = 60 сантиметров, то ВС + СD + DА = Р авсd - АВ;
ВС + СD + DА = 60 - 15;
ВС + СD + DА = 45 сантиметров;
2) Пусть длина стороны ВС = 2 * х сантиметров, длина стороны СD = 3 * х сантиметров, длина стороны DА = 4 * х сантиметров. Нам известно, что ВС + СD + DА = 45 сантиметров. Тогда
2 * х + 3 * х + 4 * х = 45;
9 * х = 45;
х = 45 : 9;
х= 5;
3) 2 * 5 = 10 сантиметров - ВС;
4) 3 * 5 = 15 сантиметров - СD ;
5) 4 * 5 = 20 сантиметров - DА.
ответ: 10 сантиметров; 15 сантиметров; 20 сантиметров
Якщо висота конуса АВ. Радіус конуса ВС, а радіус січної площини КМ, то утворюються подібні трикутники АКМ і АВС. Тоді 3/9=х/12. Звідси х=4см.Площа перерізу 16П