3.14. На отрезке AB длиной 15 м отмечена точка С. Найдите длины отрезков AC и BC, если: а) отрезок АС на 3 м длиннее отрезка ВС; б) отрезок АС в два раза длиннее отрезка BC; в) длины отрезков AC и BC относятся как 2:3.
Пусть углы при осн.равны-х ,тогда тупой угол равен 4х ,медиана в равноб.треуг так же явл высотой и биссектрисой ,получается ,что треуг (который получается при делении большего высотой ,т.есть любой из них, они оба равны ) прямоуг. высота перпен.осн. значит один из углов равен 90град. следовательно на остальные 2 так же приходится 90 град .значит х+2х =90 ,тогда х=30 гдад. теперь по свойству .катеп (т.есть (медиана =а) лежащий против угла в 30 град равен половине гипотинузы (боковой стороны треуг ) значит боковая сторона=2а
Во-первых, только равнобочную трапецию можно вписать в окружность, это значит, что боковые стороны трапеции равны, и углы при основании равны. 1) пусть дана трапеция abcd. пусть меньшее основание = а, большее основание = b. тогда (a+b)/2 = 6 см. 2) проведем диагональ bd и опустим высоты bh и ct. т.к. трапеция равнобочная, то ah = (b-a)/2, тогда dh = b - ( (b-a)/2 ) = (2b - b + a)/2 = (b+a)/2 = 6 см. 3) рассмотрим прямоугольный треуг-к hdb. tg(60 градусов) = bh/dh, bh = tg(60 гр)*dh = sqrt(3)*6 см, т.е. нашли высоту.