9. 35, а,ә, суреттердегі берілгенде а) RFQP паралелограмның бұрыштарынә) АВСD параллелограмынын бу рыннарын табыңдар және оның ромб екенін дәлелдеңдер.
Т.к. хорда параллельна касательной, то хорда и радиус, пересекающиеся в точке Н, перпендикулярны. Проведём из точки О в А и В радиусы. Т.к. радиусы, понятно дело, равны, то треугольник АОВ равнобедренный. Т.к хорда перпендикулярна радиусу, треугольник равнобедренный, то ВН = НА. Хорда 12, радиус 10, то по теореме Пифагора ОВ^2 = ОН^2 + НВ^2; 100 = ОН^2 + 36; ОН^2 = 100 - 36; ОН = √64; ОН=8. Т.к расстояние от центра окружности до касательной равно радиусу, расстояние от центра до хорды 8, то расстояние от хорды до касательной равно 10+8= 18
А) BADC - пирамида 1) Рассмотрим треугольник BAC. В нём M-середина BA и N - середина BC=> MN- средняя линия треугольника BAC(по свойству средней линии) MN || AC, MN=1/2AC Аналогично, NP||CD и MP||AD => (MNP)||(ADC)(т.к. плоскости параллельны, если две пересек. в них прямых взаимно ||) ч.т.д б) Т.к. MN, NP, MP - средние линий соответственных ▲, то MN=1/2AC, NP=1/2CD, MP=1/2AD => ▲MNP подобен ▲ADC А отношение площадей подобных ▲ равно квадрату коэффициенту подобия. S1:S2=k^2 S2=S1:k^2 S2=48:2^2=12см^2 ответ:12 см^2