Воспользовались переместительным законом, также тем, что \vec{XY}=-\vec{YX}XY=−YX и правилом многоугольника: \vec{XX_1}+\vec{X_1X_2}+...+\vec{X_{n-1}X_n} =\vec{XX_n}XX1+X1X2+...+Xn−1Xn=XXn
Использовали те же факты, что в первом пункте и не только. Так, например \vec{AB}=\vec{DC}AB=DC поскольку AB║DC, как противоположные стороны параллелограмма, по тем же соображениям AB=DC и векторы направлены в одну сторону (т. A и т. D лежат в одной полуплоскости от BC).
Использовали всё то, что было во втором пункте (например \vec{AB}=\vec{DC}AB=DC ) и ещё определение нулевого вектора: вектор начало и конец которого в одной точке.
Угол с равен 120 градусов и треугольник авс равнобедренный, то углы а и в равны между собой и равны 30 градусам (сумма углов треугольника равна 180 градусов) высота равнобедренного треугольника делит его основание пополам, получается, что ан = вн = 6см косинус угла в 30 градусов равен корню из 3/2 косинус - отношение прилежащего катета к гипотенузе, т. е. вн / вс = корень из 3/2 зная вн, можем найти вс (гипотенузу) вс = 6 / (корень из 3 / 2) (под корнем только 3) по теореме пифагора, квадрат гипотенузы равен сумме квадратов катетов, т. е. вс2 = вн2 + сн2 зная вс и вн, можем найти сн (собственно, высоту) сн2 = вс2 - вн2 сн2 = (6 / (корень из 3 / 2))2 - (6 в квадрате) сн2 = (12 / корень из 3)2 - 36 сн2 = 144/3 - 36 сн2 = 48 - 36 сн2 = 12 сн = корень из 12
)
\vec{AB}-\vec{DC}+\vec{BC} =\vec{AB}+\vec{BC}+\vec{CD} =\vec{AD}AB−DC+BC=AB+BC+CD=AD
Воспользовались переместительным законом, также тем, что \vec{XY}=-\vec{YX}XY=−YX и правилом многоугольника: \vec{XX_1}+\vec{X_1X_2}+...+\vec{X_{n-1}X_n} =\vec{XX_n}XX1+X1X2+...+Xn−1Xn=XXn
2)
\begin{gathered}\vec{AD}-\vec{BA}+\vec{DB}+\vec{DC}=\vec{AD}+\vec{DB}-\vec{BA}+\vec{DC} ==\vec{AB}+\vec{AB}+\vec{DC} =2\vec{AB}+\vec{AB}=3\vec{AB}\end{gathered}AD−BA+DB+DC=AD+DB−BA+DC==AB+AB+DC=2AB+AB=3AB
Использовали те же факты, что в первом пункте и не только. Так, например \vec{AB}=\vec{DC}AB=DC поскольку AB║DC, как противоположные стороны параллелограмма, по тем же соображениям AB=DC и векторы направлены в одну сторону (т. A и т. D лежат в одной полуплоскости от BC).
3)
\begin{gathered}\vec{AB}+\vec{CA}-\vec{DA}=\vec{DC}+\vec{CA}+\vec{AD}==\vec{AD}+\vec{DC}+\vec{CA}=\vec{AA} =0\end{gathered}AB+CA−DA=DC+CA+AD==AD+DC+CA=AA=0
Использовали всё то, что было во втором пункте (например \vec{AB}=\vec{DC}AB=DC ) и ещё определение нулевого вектора: вектор начало и конец которого в одной точке.
ответы:
1)\vec{AD};\; 2)\,3\vec{AB};\; 3)\,0.1)AD;2)3AB;3)0.