20
Объяснение:
1) Найдем угол при основании:
(180 - 45) / 2 = 67,5.
Тогда основание равно:
2 * 1 * cos(67,5) = 2cos(67,5).
Высота треугольника равна: 1 * sin(67,5).
Площадь треугольника S равна:
S = 1/2 * 2cos(67,5) * sin(67,5) = 1/2 * sin(135) = 1/2 * √2/2 = √2/4.
Площадь проекции S' равна:
S' = S * cos(45) =√2/4 * √2/2 = 1/4.
2) Длина наклонной будет равна:
5 / sin(30) = 5 : 1/2 = 10.
Так как наклонные образуют с плоскостью одинаковый угол, то они равны, тогда их сумма составит:
10 + 10 = 20
Нет возможности нарисовать рисунок к задаче.
Проведем высоту CH
В треугольнике BCH катет CH лежит против угла в 30 градусов, след-но, равен половине гипотенузы.
CH=12/2=6
ТОгда площадь равна 12*6=72
2. Т.к. треугольник равнобедренный, высота является медианой и делит сторону на два отрезка по 8/2=4 см
Тогда высота по теореме Пифагора
Площадь треугольника
3.
Т.к. треугольник равнобедренный - высота также является медианой, т.е. делит основание на 2 отрезка по 10/2=5 см
По теореме Пифагора боковая сторона равна