извините что то не могу добавить рисунок! треугольники ВОС и АОД подобны где точка о пересечения диагоналей трапеций и кэоффициент подобия равен 34/36 = 17/18 , так как по условию трапеция прямоугольная по тоеоме пифагора обозначим АО за х тогда ОС = 17/18 *х
как известно Высота прямоугольного треугольника -среднее геометрическое между проекциями катетов на гипотенузу,
34^2=x*17/18 *x
x=6√34
значит другая диагональ равна 6√34+6√34*17/18, теперь сами основания
по теореме пифагора нижнее равна
(6√34)^2 +36^2 =√2520
верхнее
34^2+ (6√34*17/18)^2 ~ 2247
что то диагональ какие то может неправильно написали!
Пусть площадь АВС s = 48;
Площадь треугольника ALC равна S/4, поскольку LC/BC = 1/4, а высоты у ABC и ALC - общие - это расстояние от А до ВС. При этом расстояние от М до ВС составляет 3/4 расстояния от А до ВС (оставляю доказательство этого элементарного утверждения вам, подсказка - надо провести перпендикуляры к ВС из А - АН и из М - МР и рассмотреть подобные треугольники AHC и MРC, причем МС/АС = 3/4), поэтому площадь треугольника MLC равна (S/4)*(3/4) = 3*S/16;
Точно так же площади треугольников АМК и BKL равны 3*S/16;
Поэтому площадь треугольника MLK равна S - 3*(3*S/16) = 7*S/16 = 21;
ответ: СН=√3/4.
Объяснение:
Известно, что катет, лежащий против угла в 30* равен 1/2 гипотенузы
АС=1/2АВ =1/2. Угол АСН=30*. Значит АН=1/2(1/2)=1/4. Откуда
СН²=АС²-АН²=1/4-1/16=3/16.
СН=√3/4.
Как-то так... :)) Удачи!