Начертите прямоугольный треугольник и опишите вокруг него окружность. Любой прямоугольный треугольник опирается на диаметр описанной окружности, т.е. его гипотенуза = диаметру окружности. Следовательно, медиана, которая делит гипотенузу пополам, будет падать на середину диаметра - т.е. центр окружности. Половины диаметра - это радиусы окружности. Т.к. вершина прямого угла треугольника лежит на окружности, а медиана падает в её центр, значит медиана - это радиус окружности. Радиус одинаков по всей окружности. А если медиана - это радиус, и половины гипотенузы - тоже радиусы, делаем вывод, что медиана равна половине гипотенузы. Т.е. гипотенуза в целом будет равна 2-м медианам: 8+8=16.
Рассмотрим равнобедренный треугольник ABC с боковыми сторонами AB = BC и основанием AC.
Опустим из вершины B высоту BH на основание AC.
Рассмотрим треугольники ABH и BCH.
Так как BH - высота, то углы BHA = BHC = 90°, т.е. треугольники ABH и BCH - прямоугольные.
Заметим, что AB = BC, т.е. гипотенузы треугольников ABH и BCH равны и у них общий катет BH.
Следовательно, треугольники ABH и BCH конгруэнтны по гипотенузе и катету.
Отсюда вытекает, что AH = CH, а это означает, что BH является медианой.
Также из равенства треугольников ABH и BCH имеем, что углы ABH = CBH.
Следовательно, BH является биссектрисой угла ABC.