М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
melitatomashko
melitatomashko
17.05.2022 23:24 •  Геометрия

Биссектриса угла А паралеллограмма АВСД делит сторону СД в отношении 1:3, считая от вершины угла С Найдите стороны паралеллограмма если его периметр равен 84 см

👇
Ответ:
elenalev222016
elenalev222016
17.05.2022

Объяснение:

84.:1:3орролл

4,6(91 оценок)
Открыть все ответы
Ответ:
elenaandreeva34
elenaandreeva34
17.05.2022
Для того чтобы найти высоту, проведенную из вершины наибольшего угла треугольника, мы можем использовать формулу для площади треугольника.

Площадь треугольника можно выразить как половину произведения длины основания треугольника на длину высоты, проведенной из вершины наибольшего угла треугольника. То есть:

Площадь треугольника = (1/2) * основание * высота

Основанием треугольника, на которое мы будем опираться, будет отрезок CD. Длина отрезка CD равна 1.

Теперь нам нужно найти длину высоты. Мы можем воспользоваться формулой для площади треугольника и фактом, что площадь треугольника можно выразить через стороны треугольника и радиус вписанной окружности.

Сначала найдем площадь треугольника. Для этого воспользуемся формулой Герона, так как у нас известны длины всех сторон треугольника:

Площадь треугольника = √(периметр / 2 * (периметр / 2 - CD) * (периметр / 2 - DE) * (периметр / 2 - EC))

где периметр треугольника равен сумме длин всех его сторон.

Периметр треугольника = CD + DE + EC

Периметр треугольника = 1 + 2 корень из 6 + 5 = 6 + 2 корень из 6

Теперь подставим значения в формулу для площади треугольника:

Площадь треугольника = √(6 + 2 корень из 6 / 2 * (6 + 2 корень из 6 / 2 - 1) * (6 + 2 корень из 6 / 2 - 2 корень из 6) * (6 + 2 корень из 6 / 2 - 5))

Площадь треугольника = √(6 + 2 корень из 6 / 2 * (6 + 2 корень из 6 / 2 - 1) * (6 + 2 корень из 6 / 2 - 2 корень из 6) * (6 + 2 корень из 6 / 2 - 5))

Площадь треугольника = √(6 + 2 корень из 6 / 2 * (3 + корень из 6 - 1) * (3 + корень из 6 - 2 корень из 6) * (3 + корень из 6 - 5))

Площадь треугольника = √(6 + 2 корень из 6 / 2 * (3 + корень из 6 - 1) * (3 + корень из 6 - 2 корень из 6) * (3 + корень из 6 - 5))

Площадь треугольника = √(6 + 2 корень из 6 / 2 * (4 + корень из 6 - 2 корень из 6) * (3 + корень из 6 - 5))

Площадь треугольника = √(6 + 2 корень из 6 / 2 * (4 - корень из 6) * (3 - 5))

Площадь треугольника = √(6 + 2 корень из 6 / 2 * (4 - корень из 6) * (-2))

Площадь треугольника = √(6 + 2 корень из 6 / 2 * (-2) * (4 - корень из 6))

Площадь треугольника = √(12 - 4 корень из 6)

Теперь, когда у нас есть площадь треугольника, мы можем найти высоту, проведенную из вершины наибольшего угла, используя формулу:

Площадь треугольника = (1/2) * основание * высота

(1/2) * 1 * высота = √(12 - 4 корень из 6)

высота = (2 * √(12 - 4 корень из 6)) / 1

высота = 2 * √(12 - 4 корень из 6)

Таким образом, высота, проведенная из вершины наибольшего угла треугольника, равна 2 * √(12 - 4 корень из 6).
4,6(92 оценок)
Ответ:
Задача состоит в том, чтобы выразить значения переменных x и y в терминах синусов острых углов в данном треугольнике.

Перед тем, как ответить на вопрос, необходимо разобраться с основным свойством синуса в прямоугольных треугольниках. Согласно этому свойству, синус острого угла в прямоугольном треугольнике равен отношению противолежащего катета к гипотенузе. Также, в данной задаче, мы имеем дело с тремя острыми углами, поэтому выразим синусы для каждого из них.

Обозначим sin(α) как синус острого угла α, где α - угол ACB, sin(β) - синус острого угла β, где β - угол CAB, и sin(γ) - синус острого угла γ, где γ - угол ABC.

Согласно свойству синуса, у нас есть следующие равенства:
sin(α) = AB/AC,
sin(β) = BC/AC,
sin(γ) = AB/BC.

Теперь мы можем выразить значения переменных x и y через sin(α), sin(β) и sin(γ).

1. Для выражения переменной x:
Из рисунка видно, что AC является гипотенузой прямоугольного треугольника ABC. Используя свойство синуса для угла β, получаем:
sin(β) = BC/AC.
Отсюда:
BC = sin(β) * AC.

Также, по теореме Пифагора имеем:
AB = sqrt(AC^2 - BC^2).

Следовательно:
AB = sqrt(AC^2 - (sin(β))^2 * AC^2) = sqrt(AC^2(1 - (sin(β))^2)) = AC * sqrt(1 - (sin(β))^2).

Таким образом, мы получаем:
x = AB = AC * sqrt(1 - (sin(β))^2) = AC * sqrt(1 - (BC/AC)^2) = AC * sqrt(1 - (sin(β))^2).

2. Для выражения переменной y:
Из рисунка видно, что AC является гипотенузой прямоугольного треугольника ABC. Используя свойство синуса для угла α, получаем:
sin(α) = AB/AC.
Отсюда:
AB = sin(α) * AC.

Также, по теореме Пифагора имеем:
BC = sqrt(AC^2 - AB^2).

Следовательно:
BC = sqrt(AC^2 - (sin(α))^2 * AC^2) = sqrt(AC^2(1 - (sin(α))^2)) = AC * sqrt(1 - (sin(α))^2).

Таким образом, мы получаем:
y = BC = AC * sqrt(1 - (sin(α))^2).

Таким образом, полные выражения для переменных x и y через синусы острых углов в терминах данной задачи следующие:
x = AC * sqrt(1 - (sin(β))^2),
y = AC * sqrt(1 - (sin(α))^2).

Важно помнить, что это только одно из множества возможных решений задачи. Зависимости между переменными и синусами углов могут быть разными в разных треугольниках.
4,5(55 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ