1. 60
2. АВ = 70°, АС = ВС = 145°.
Объяснение:
1.
Дано:
Окружность (О; r)
∠OBA = 30°
CA — касательная
Найти:
∠BAC — ?
1) Так как радиусы окружности равны, значит, две стороны треугольника ABO равны. ⇒ ΔABO равнобедренный (AO = OB).
У равнобедренного треугольника углы при основании равны, следовательно: ∠OBA = ∠OAB = 30°.
2) Касательная к окружности перпендикулярна радиусу, проведённому в точку касания, значит CA ⊥ OA. ∠OAC = 90°.
3) ∠BAC = ∠OAC - ∠OAB.
∠BAC = 90° - 30° = 60°.
2 Задача
Если О - центр окружности, то угол АОВ - центральный.
Центральный угол равен дуге, на которую опирается. Отсюда, дуга АВ = 70°.
Угол САВ = углу СВА, тогда дуга АС = дуге ВС = (360° - 70°) / 2 = 290° / 2 = 145°.
На рисунке вопроса четырехугольник похож на ромб. В ромб можно вписать окружность, но и в некоторые другие четырехугольники - тоже.
Объяснение:
Стороны четырехугольника, в который вписана окружность, - касательные к ней.
Отрезки касательных к окружности, проведенные из одной точки, равны. (По т. о касательных)
Примем отрезки касательных из т. А равными а, из т.В равными b, из т. С - равными с и из точки Д равными d. ( см. рисунок в приложении),
Тогда АВ=а+b, СD=с+d ⇒ АВ+СD=a+b+c+d
Аналогично ВС= b+c, АD=a+d ⇒ BC+AD=a+b+c+d. ⇒
АВ+СD=BC+AD - доказано.
Вывод: суммы длин противоположных сторон четырехугольника, описанного около окружности, равны.
Или иначе: если суммы длин противоположных сторон четырехугольника равны, в него можно вписать окружность.