62. Из предложенных утверждений выберите и докажите тео- рему, которая является обратной к теореме – противоположные стороны параллелограмма равны: а) если противоположные сто- роны четырехугольника равны, то он является параллелограм- мом; б) если хотя бы две стороны четырехугольника равны, то это параллелограмм; в) если в четырехугольнике противоположные стороны не равны, то он не является параллелограммом.
Внешний угол треугольника при данной вершине — это угол, смежный с внутренним углом треугольника при этой вершине.при каждой вершине треугольника есть два внешних угла. чтобы построить внешний угол при вершине треугольника, можно продлить любую из двух сторон, на которых лежит данная вершина. таким образом получаем 6 внешних углов. внешние углы каждой пары при данной вершины равны между собой (как вертикальные): дано: ∆авс, ∠1 — внешний угол при вершине с.
доказать: ∠1=∠а+∠в. так как сумма углов треугольника равна 180º, ∠а+∠в+∠с=180º.следовательно, ∠с=180º-(∠а+∠в). ∠1 и ∠с (∠асв) — смежные, поэтому их сумма равна 180º, значит, ∠1=180º-∠с=180º-(180º-(∠а+∠в))=180º-180º+(∠а+∠в)=∠а+∠в.
Объяснение:
402
х - периметр
1 случай: основание = x - 40; боковые стороны = x - 30
x - 40 + 2(x-30) = 3x - 100 = x - периметр
2x = 100
x = 50
основание = 10, боковые стороны по 20
2 случай: основание = x - 30; боковые стороны = x - 40
x - 30 + 2(x-40) = 3x - 110 = x - периметр
2x = 110
x = 55
основание 25; боковые стороны по 15
404
x - углы при основании; 180 - 2x - между боковыми сторонами
1 случай:
x + (180-2x) = 60
x = 120 - невозможно
2 случай:
x + x = 60
x = 30
углы при основании по 30, угол между боковыми сторонами 180-60=120
405
Внешний угол при основании не может быть острым, потому что тогда сам угол при основании будет тупым - этот случай отпадает
Соответственно, угол между боковыми сторонами равен 180-15=165
Тогда углы при основании равны 15/2 = 7,5