Предположим, что внутри выпуклого четырёхугольника ABCD существует область, которую не покрывают круги, построенные на его сторонах как диаметрах. Пусть точка Е принадлежит этой области. Чтоб не загромождать рисунок, построим только одну окружность с диметром AD. Из точки Е опустим на AD перпендикуляр EF. Он пересечёт окружность в точке G. Любой вписанный в окружность угол, построенный на её диаметре, прямой. Т.е. <AGD = 90°. Следовательно, <AЕD обязательно будет острым (<AЕD < 90°). Повторяя аналогичные построения для трёх других сторон, получим 4 острых угла, сумма которых меньше 360°, что невозможно, так как их сумма должна быть равна 360°. Пришли к противоречию. Значит, внутри выпуклого четырёхугольника не существует области, которую не покрывают круги, построенные на его сторонах как диаметрах.
ответ:даны точки A(3;-1;2) и B(5;1;1) a)Найдите координаты и модуль вектора AB. б) Найдите координаты точки C, если AC(-4;0;2
в) ТОчка D лежит на оси y. Найдите координаты, если я пропустил тему, (если можно с объяснением! )
АВ (5-3;1-(-1);1-2)=(2;2;-1)
IАВI=√2²+2²+(-1)²=√4+4+1=√9=3
АС=(х-3;у-(-1);z-2)=(х-3;у+1;z-2)=(-4;0;2)
х-3=-4;х=-4+3;х=-1
у+1=0;у=-1
z-2=2;z=2+2;z=4
Следовательно, С (-1;-1;4)
Точка Д лежит на оси ОУ, следовательно, х=0;у; z=0
ВД=√0²+у²+0²=√у²=у=√26
Д (0;√26;0)
Объяснение: