1. Раз BAD = 90 градусов и ABD = 45 градусов, то оставшийся угол ADB= 180-90-45=45 градусов. 2. Судя по этим углам, можно заключить, что AD = AB, а раз AB = AC = BC, то AD = AB = BC = AC. 3. Раз в треугольнике AD = AC, то и угол ADC = угол ACD. 4. В треугольнике ABC угол A = угол B = угол C = 180/3 = 60 градусов. 5. В треугольнике ACD, как и всегда, сумма углов = 180 градусов. Но раз там угол D = угол C, то возьмём один из них за х. Получается, что х+х+90(угол DAB)+60(угол BAC) = 180. 180-90-60=2х 30=2х х=15 градусов = угол ACD = ADC. 6. Угол D, как было указано в пункте №1, равен 45 градусам. Этот угол состоит из угла ADC (15 градусов) и угла CDB (который нам и надо найти). Получается, что: 45=15+CDB CDB = 30 градусов
Точка Е равноудалена от точек А и В, значит АЕ=ВЕ
Р(Δ АВЕ)=АВ+АЕ+ВЕ
40=14+2АЕ ⇒ АЕ=13 см
Из прямоугольного треугольника ADE:
cos ∠ A= AD/AE=7/13
Так как треугольник АВС равнобедренный АВ=ВС, то и углы при основании равны
∠А=∠С
cos∠C=7/13
По теореме косинусов из треугольника ВЕС:
ВЕ²= ЕС² +ВС² - 2·ЕС·ВС·cos ∠C
13²= EC²+14²-2·EC·14·(7/13)
ЕС=х
Решаем квадратное уравнение:
·13х²-196х+351=0
D=(-196)²-4·13·351=38416-18252=20164=142²
x=(196-142)/26 =27/13 или х=(196+142)/26=13
АС=АЕ+ЕС=13+(27/13)=196/13
или
АС=13+13=26