Построения в приложенном рисунке.
Объяснение:
Возможны 2 варианта построения, так как из вершины тупого угла можно провести две высоты к смежным сторонам параллелограмма.
1. На прямой "а" откладываем отрезок, равный одной из данных нам сторон и восстанавливаем к середине этого отрезка перпендикуляр (проведя две окружности радиусом, большим половины отрезка и соединяя точки их пересечения).
2. На прямой "а" откладываем от конца первого отрезка отрезок, равный первому и также восстанавливаем к середине этого отрезка перпендикуляр.
3. Из точек начала и конца первого отрезка, как из центров, проводим окружности радиусом, равным второму данному нам отрезку и в месте пересечения этих окружностей с проведенными перпендикулярами получаем точки - вершины строящегося параллелограмма.
4. Соединяем эти точки и точки начала и конца первого отложенного отрезка и получаем искомый параллелограмм (даже два зеркальных), удовлетворяющий условиям задачи.
P.S. Для второго варианта повторяем построение, начиная строить с отложения на прямой "а" второй данной нам стороны.
Дано: AB=BC, AO=BO=OC=25 см, AC=48 см.
Решение: см. на рисунок. Площадь треугольника ABC можно найти как 1/2*BH*AC. Найдем BH=BO+OH, BO известно, найдем OH. Треугльник COH прямоугольный (OH - высота), HС=1/2*AC (в равнобедренном треугольнике высота проведенная к основанию является и медианой). По теореме Пифагора найдем OH:
OC=25, HC=48/2=24. Подставим и получим OH=7 см. ВН=25+7=32.
S треугольника =1/2*48*32=768 (см квадратных).
ответ: 768 кв. см.