В моём доме, в книжном шкафу живут дружно книги разных авторов, разные по содержанию и оформлению, толстые и тонкие, в красивых переплётах и совсем простые. Но все они ужасно интересные. По ночам, когда в доме всё затихает, они, наверное, тихонько разговаривают друг с дружкой. Можно попробовать представить, о чём этот разговор. Вот на верхней полке стоят толстые книги в красивых переплётах. Это классика. Пушкин и Лермонтов, Толстой и Дюма… Они важно поучают о том, как жили в старину, о балах и великих войнах, о прекрасных дамах и храбрых рыцарях. А ниже на полке – детективы и фантастика. Это взрослые сказки, послушаю их разговоры, когда подрасту. И любовные истории нашепчет книжка – подружка. Научит верить, любить, ждать. Многие книжки в шкафу считают меня своим хорошим другом. Первые детские сказки помнят, как я брала их своими маленькими ладошками. Они, конечно, слегка потрёпаны, но скорее всего, гордятся тем, что в самые ранние годы учили меня добру, что я научилась любить книги, именно разглядывая картинки на их страницах. А сколько приключений пережили мы с моей подружкой Алисой Селезнёвой из книг Кира Булычёва. Несколько лет, одна к одной собирались на полке книжки о доброй Белоснежке писательницы Софьи Прокофьевой. Они, наверное, очень горды тем, что мне бороться со скукой, веселили своими невероятными историями, учили добру и настоящей дружбе. Я люблю свою домашнюю библиотеку и, с удовольствием, буду продолжать слушать, о чём говорят книги.
Read more: Сочинение на тему О чем говорят книги http://sochineniya-na5.ru/sochinenie-na-temu-o-chem-govoryat-knigi/
Объяснение:
1. Если внутренние накрест лежащие углы равны, то прямые параллельны.
∠70°=∠70° ⇒
a║b
2. Если сумма внутренних односторонних углов равна 180, то то прямые параллельны.
∠110+∠70=180°⇒
c║d
3. Если соответственные углы равны, то прямые параллельны.
∠a=∠a
MD║|NK
4. Если соответственные углы равны, то прямые параллельны.
∠90=∠90
m║n
5. Если внутренние накрест лежащие углы равны, то прямые параллельны.
BC║AD
AB║CD
6. Если внутренние накрест лежащие углы равны, то прямые параллельны
∠EFL=∠FLK ⇒ EF║LK
∠EKF=∠KEL⇒ FK║EL
7. Если внутренние накрест лежащие углы равны, то прямые параллельны
∠NPM=∠PMQ ⇒NP║MQ
∠NMP=∠MPQ⇒NM║PQ
8. ΔAOB=ΔCOD (по двум сторонам и углу между ними)⇒
∠BAO=∠ODC если внутренние накрест лежащие углы равны, то прямые параллельны
AB║CD
9. ΔOXY=ΔOYZ по трем сторонам ⇒
∠XYO=∠YOZ ⇒ XY║OZ
∠XOY=∠OYZ⇒ OX║YZ
10.
UR║ST (внутренние накрест лежащие углы равны)
ΔRUO=ΔOST (по стороне и двум прилежащим к ней углам) ⇒
∠TRU=∠STR ⇒ RS║UT