В параллелепипеде 6 граней, - по две противоположных, которые попарно равны между собой. Естественно, их диагонали также равны. В каждой вершине параллелепипеда сходятся смежные стороны трех граней, и их диагонали образуют треугольник. (см. рисунок вложения) В данном случае диагонали равны 30, 40 и 70 см. По теореме о неравенстве треугольников: длина любой стороны треугольника меньше суммы длин двух других сторон. Здесь имеем "треугольник" и три длины, и 70=30+40. Тогда меньшие стороны "лягут" на большую, и треугольник не получится, как и параллелепипед с такими диагоналями граней. Не могут диагонали трех граней прямоугольного параллелепипеда иметь длины 30 см, 40 см и 70 см.
2) Это каноническое уравнение прямой АВ, оно же в общем виде: -9х + 18 = 12у - 60, 9х +12у - 78 = 0, 3х + 4у - 26 = 0 или в виде уравнения с коэффициентом: у = (-9/12)х + (78/12) = (-3/4)х + 13/2 = -0,75х + 6,5.
ВС: (х-14)/(18-14) = (у+4)/(18+4), ВС: (х-14)/4 = (у+4)/22 (если уравнения нужны в другом виде - то по аналогии с АВ самому пересчитать). Угловые коэффициенты находятся при пересчёте уравнения с коэффициентом: АВ: к=-0,75, ВС: у = 5,5 х - 81 к = 5,5.
3) cos В= (АВ²+ВС²-АС²) / (2*АВ*ВС) = 0,447214. B = 1,107149 радиан = 63,43495 градусов.
4) СД: (Х-Хс)/(Ув-Уа) = (У-Ус)/(Ха-Хв). Расчет длин сторон: АВ = √((Хв-Ха)²+(Ув-Уа)²) = √225 = 15. BC = √((Хc-Хв)²+(Ус-Ув)²) = √500 = 22,360679. AC = √((Хc-Хa)²+(Ус-Уa)²) = √425 = 20,61552813. Полупериметр р = 28,98810, S = √(p(p-a)(p-b)(p-c)) = 150. Площадь можно определить и по другой формуле: S=(1/2)*|(Хв-Ха)*(Ус-Уа)-(Хс-Ха)*(Ув-Уа)| = 150. Длина высоты СД = 2S/АВ = 20.
В каждой вершине параллелепипеда сходятся смежные стороны трех граней, и их диагонали образуют треугольник. (см. рисунок вложения)
В данном случае диагонали равны 30, 40 и 70 см.
По теореме о неравенстве треугольников: длина любой стороны треугольника меньше суммы длин двух других сторон.
Здесь имеем "треугольник" и три длины, и 70=30+40.
Тогда меньшие стороны "лягут" на большую, и треугольник не получится, как и параллелепипед с такими диагоналями граней.
Не могут диагонали трех граней прямоугольного параллелепипеда иметь длины 30 см, 40 см и 70 см.