Объяснение:
Проекция ребра SA на плоскость будет OA (SO ┴ (ABCDEF) и равна радиусу описанной около основания (здесь правильного шестиугольника) , что свою очередь равна сторону шестиугольника a₆ = R =acosα ; SO =H =asinα .
Vпир =1/3*Sосн*H =1/3*6*√3/4*(acosα)²*asinα =(√3/2)*cos²α*sinα*a³ .
При α=60° ; a= 2 получаем : Vпир = (√3/2)*1/4*(√3/2*8 =3/2.
Апофема пирамиды является образующий конуса
Vкон =1/3*π*r² *H
r = (√3/2)*R =(√3/2)*acosα.
Vкон =1/3*π*((√3/2)*acosα)*asinα =.(π/4)*cos²α*sinα*a³ .
Получилось Vкон = ( π/2√3) *Vпир .
При α=60° ; a= 2 получаем : Vкон =( π/2√3)*3/2 =π√3/6.
L =√(a² - (R/2)² =√(a² -(1/2*acosα)²) =a/2*√(4 - cos²α) ;
Следовательно углы пр основании равны, то есть углы ∠SPR и ∠SRP равны. ==> ∠SPR = ∠SRP= 1,5*∠PSR
Сумма углов в треугольнике равна 180°. Тогда ∠SPR + ∠SRP + ∠PSR=180°
Подставляем в выражение известные нам значения:
(1,5*∠PSR)+(1,5*∠PSR)+∠PSR =180°
Упрощаем:
4 * ∠PSR= 180°
∠PSR = 45°
Находим углы при основании, то есть ∠SPR и ∠SRP, зная что оба угла равны 1,5*∠PSR
∠SPR = ∠SRP= 1,5 * 45°=67,5°
Делаем проверку, того что все углы в треугольнике в сумме дают 180°
67,5° + 67,5° + 45°=180°
Всё верно.
ответ: ∠SPR = 67,5° , ∠SRP=67,5° , ∠PSR = 45°