От квадрата со стороной a отсечены:
треугольник, равный 1/8 площади квадрата
два симметричных треугольника с катетами a и a*tg15
Искомая площадь равна
S= a^2(1 -1/8 -tg15) =a^2(8√3 -9)/8
R - радиус описанной окружности
Сторона квадрата a =R√2
Сторона треугольника 12 =R√3
a= 12*√2/√3 =4√6
S= 12(8√3 -9) =96√3 -108
Центр окружности - на пересечении диагоналей квадрата. Треугольник имеет с квадратом общую вершину, следовательно серединный перпендикуляр к основанию совпадает с диагональю квадрата.
AO/OH =2/1 (AH - медиана), AO=OC (радиусы) => OC/OH =2/1.
BD⊥AC, EF⊥AC => BD||EF. По теореме Фалеса EF делит стороны BC и CD в том же отношении, что и OC, то есть пополам.
DAE= (DAB-EAF)/2 =(90-60)/2 =15
tg15 =tg(30/2) =(1-cos30)/sin30 =2(1-√3/2) =2-√3
Треугольник FCD прямоугольный, т.к. угол D=90, и равнобедренный т.к. угол DCF=45 градусов(биссектриса делит угол пополам). Гипотенуза FC=6, а катеты равны. Пусть длина катета X, по теореме Пифагора:
x²+x²=36
x²=18
x=3√2
Треугольники FEA и FCD подобны(по двум углам). Тогда AF/FD=FE/FC
Т.е. AF=√2, тогда AD=FD-AF=2√2
Площадь прямоугольника равна 2√2*3√2=12 см²