Треугольник делится медианой, проведенной к основанию на два треугольника, периметры которых 18 cm и 24 cm. Найдите большую боковую сторону, если меньшая боковая сторона равна 6 cm
Хорошо, с разъяснениями. Дано: <2=43°, а||б Найти:<1,<3,<4,<5,<6,<7,<8.
РЕШЕНИЕ: 1)Так как а||б, то <2+<5=180°-как внутренние односторонние при прямых а||б и секущей с. Если сумма их равна 180°, то <5= 180°-43°=137°. 2)Так как а||б, то <2=<6=43°, <3=<5=137°- как внутренние накрест лежащие при прямых а||б и секущей с. 3) Так как а||б, то <1=<5=137°, <2=<8=43°, <4=<6=43°, <3=<7=137° - как соответственные углы при прямых а||б и секущей с.
Углы, образуемые диагоналями ромба с одной из сторон - это два угла в прямоугольном треугольнике, одном из 4 прямоугольных треугольников, на которые делит ромб его диагонали. Сумма всех углов треугольника = 180. Получаем: 7*х + 11*х + 90 = 180 18*х = 90 х=5 значит углы треугольника равны 7*х=7*5=35 градусов 11*х=11*5=55 градусов диагонали ромба делят его углы на два равных угла. Значит получаем, что у ромба такие угла: 35*2 = 70 градусов 55* 2 = 110 градусов Углы ромба равны 70, 70, 110, 110 градусов (противоположные углы равны)
b-12
Объяснение:
6+m+c/2=18
b+m+c/2=24
b-6=24-18=6; b=12