ответ:
объяснение:
определение 1. окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). в этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником.
теорема 1. если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180°.
доказательство. угол abc является вписанным углом, опирающимся на дугу adc (рис.1). поэтому величина угла abc равна половине угловой величины дуги adc. угол adc является вписанным углом, опирающимся на дугу abc. поэтому величина угла adc равна половине угловой величины дуги abc. отсюда вытекает, что сумма величин углов abc и adc равна половине угловой величины дуги, со всей окружностью, т.е. равна 180°.
если рассмотреть углы bcd и bad, то рассуждение будет аналогичным.
теорема 1 доказана.
начнем с конца.
3. Так как внешний угол при вершине А равен 120, то угол А будет равен 60, значит угол В равен 30. Поэтому гипотенуза АВ будет равен 2АС, т.к. он лежит напротив угла 30 градусов. Значит, АС+АВ=АС+2АС=18 )=> 3АС=18 )=> АС=6 )=> АВ=12
2. Так как треугольник равнобедренный, биссектриса опущенная из вершины Е является и медианой, и высотой, следовательно KF=16/2=8
угол DEK = 2*43=86 градусов
угол EFD будет равен 90 градусов, по свойству, которое я описал выше
1. Так-с, треугольник равнобедренный, значит угол ВАС=BCA=2y. Угол АВС обозначим за х.
В треугольнике АВD: угол BAD+ABD=180-110=70, т.е. x+y=70
B треугольнике ADC: угол ADC=70, т.к. он смежен углу ADB. Поэтому угол DAC+DCA=y+2y=110 )=> y=110/3
И так как y=110/3, то x=70-110/3 умножаем уравнение на 3 и получим ниже:
3x=210-110
3х=100
х=100/3
х + х +38° = 180°
2х = 180° - 38°
2х = 142°
х = 71 °( один угол)
71°+ 38 °= 109° ( другой угол)