1
Отметьте на плоскости три точки А, В и С, причём так, чтобы они не лежали на одной прямой. Соедините полученные точки между собой отрезками АВ, ВС и СВ. У вас получился треугольник АВС – геометрическая фигура, имеющая три стороны, три вершины и три угла.
2
Найдите середину отрезка АВ. Для этого возьмите циркуль и проведите две окружности одинакового радиуса, равного отрезку АВ с центрами в вершинах А и В. Найдите точки пересечения P и Q двух построенных окружностей. С линейки постройте отрезок, концами которого будут точки P и Q. Найдите искомую середину отрезка АВ – ею будет являться точка пересечения стороны АВ с отрезком PQ.
3
Найдите середины стороны ВС. Для этого возьмите циркуль и проведите две окружности одинакового радиуса равного отрезку ВС с центрами в вершинах В и С. Найдите точки пересечения H и G двух построенных окружностей. С линейки постройте отрезок, концами которого будут точки H и G. Найдите искомую середину отрезка BC – ею будет являться точка пересечения стороны BC с отрезком HG.
4
Найдите середины стороны СА. Для этого возьмите циркуль и проведите две окружности одинакового радиуса, равного отрезку СА с центрами в вершинах С и А. Найдите точки пересечения M и N двух построенных окружностей. С линейки постройте отрезок, концами которого будут точки M и N. Найдите искомую середину отрезка СА – ею будет являться точка пересечения стороны СА с отрезком MN.
5
Постройте медианы треугольника. Для этого с линейки и карандаша проведите отрезки, соединяющие вершины треугольника с серединами противолежащих сторон этого треугольника. В результате правильно построения медианы должны пересечься в одной точке.
6
Найдите центр треугольника. Им будет являться точка пересечения медиан. Центр треугольника ещё по-другому называют центром тяжести.
Объяснение:
1) ΔDEG = ΔEFG согласно первому признаку равенства треугольников — по двум сторонам и углу между ними (если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны).
EG - общая, DE= FG, ∠DEG равен ∠FGE (по условию).
2) ∠FGE = 63°,так как он совпадает с ∠GFE = 63° в равном треугольнике.
2. Пусть основание будет х, тогда боковая сторона будет 3х.
Составим уравнение:
3х+3х+х=15,4
7х=15,4
х=2,2 м
Следовательно основание равно 2,2 м , а боковые стороны по 6,6 м.
Обозначим треугольник АВС(смотри рисунок). По условию ВО/ОМ=3/2. ВМ=10. В треугольнике ВМС биссектриса ОС, тогда ВС/МС=ВО/ОМ=3/2. В треугольнике АВС биссектриса ВМ , тогда МС/ВС=АМ/АВ=2/3. Отсюда АВ/ВС=АМ/МС=2/3. Далее смотри вложения. В рисунке все размеры соблюдаются, можно проверить решение графически. Не удаётся добавить вложения, придётся писать. Итак в продолжение по рисунку. Используем теорему косинусов. В треугольнике ВМС. МСквадрат=ВСквадрат+ВМквадрат-2*ВС*ВМ*cosА, Хквадрат=(3/2*Х)квадрат+100-2*(3/2*Х)*10*cosA. Отсюда cosA=(5/4*Хквадрат+100)/30*Х. Аналогично в треугольнике АВМ АМквадрат=АВквадрат+ВМквадрат-2*АВ*ВМ*cosA. (2/3Х)квадрат=Хквадрат+100-2*Х*10*cosA. Отсюда cosA=(5/9*Хквадрат+100)/20*Х. Приравниваем выражения косинусов и получим Х=2корня из 30. То есть АВ=2 корня из 30. Отсюда АМ=2/3*АВ=(4/3)корня из 30. ВС=3/2АВ=3 корня из 30, МС=2/3*ВС=2 корня из 30. Искомая АС=АМ+МС=(10/3)*корень из30. (cosA -это косинус альфа, альфа-половина угла В)