1)г
2)Трикутники АВВ1 і АСС1 подібні за трьома кутами ( два при паралельних прямих і третій А спільний) отже
АС/АВ=СС1/ВВ1=11/(9+11) звідси
ВВ1=20*СС1/11=20*8,1/11=162/11
3)Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость.
В нашем случае проекциями данного нам отрезка на плоскости - это отрезки, соединяющие концы данного отрезка на плоскости и перпендикуляра, опущенного на данную плоскость.Но плоскости перпендикулярны, значит эти перпендикуляры - это расстояния от концов отрезка до линии пересечения плоскостей. То есть проекцией отрезка АВ на плоскость α будет отрезок АВ1,а углом между отрезком АВ и плоскостью α будет угол ВАВ1. Соответственно проекцией отрезка АВ на плоскость β будет отрезок ВА1,а углом между отрезком АВ и плоскостью β будет угол АВА1.
Синус угла ВАВ1 равен отношению противолежащего катета ВВ1 к гипотенузе AB, то есть Sin(ВАВ1)=12/24=1/2. Значит угол между отрезком АВ и плоскостью α равен 30°.
Синус угла АВА1 равен отношению противолежащего катета АА1 к гипотенузе AB, то есть Sin(АВА1)=12√2/24=√2/2. Значит угол между отрезком АВ и плоскостью α равен 45°.
ответ: Углы, образованные отрезком с плоскостями равны 30° и 45°.
4)находим высоту, проведенную к стороне 14
она равна 12( можно найти через формулу Герона площадь, а затем поделить на половину стороны 14см)
ну а дальше расстояние равно гипотенузе с катетами 12 и 16 и равна 20см
5)1. Проведем перпендикуляры из точек С и Д на АВ. Обозначим их СК и ДКПо условию
угол СКД=45.
2. Из треуг. АВС СК - высота правильного треугольника
СК=АВ*sqrt {3}/2=6
3. В треуг. АВД ДК - высота, опущенная на основание равнобедренного треугольника. Как известно, она совпадает с медианой.
АК= АВ/2= 2sqrt {3}
Из прямоуг. трег. АКД по теореме Пифагора
ДК= sqrt ( АД^2-АК^2)= sqrt( 14-12)= sqrt2
4 В треугольнике СКД СК=6, СД=sqrt2 . Угол СКД= 45
По теореме косинусов
СД^2=36+2-2*6*sqrt2*сos 45=26
СД=корень из 26
Объяснение:
На координатной плоскости есть окружность радиусом √2/2, с центром в начале координат. На отрезке, диаметре этой окружности, с концами А (0, √2/2) и В (0,-√2/2) построен равносторонний треугольник АВС1.
Его третья вершина лежит в точке С1 (√6/2,0).
Окружность с центром в этой точке и радиусом √7, (если есть решение) пересекает первую окружность в двух точках, симметричных относительно оси X. Координаты точки С в верхней полуплоскости (то есть y>0) находятся так.
x^2 + y^2 = 1/2;
(x - √6/2)^2 + y^2 = 7;
Так вот, у этой системы НЕТ решения, потому что
√6/2 + √2/2 < √7;
То есть эти окружности не пересекаются.
Поэтому при любом угле треугольника сумма расстояний от вершин до точки Ферма (то есть наименьшее возможное значение этой суммы) будет МЕНЬШЕ √7.
Не похоже, что я где то ошибся, но все может быть, проверьте.
Теорию точки Ферма (она же точка Торичелли) в треугольниках я тут излагать не стану. Достаточно понимать, что для прямоугольного треугольника она СУЩЕСТВУЕТ и лежит внутри треугольника.
Расстояние от вершины С, лежащей на окружности x^2 + y^2 = 1/2, до точки С1 ОБЯЗАТЕЛЬНО должно равняться заданному в задаче √7.
(Может, в условии другое число, например, гипотенуза √3, или нвр = √5)
Кстати, для прямоугольного треугольника довольно легко из теоремы косинусов получить соотношение
m^2 = c^2*(1 + (√3/2)*sin(2*Ф))
где Ф - острый угол треугольника, с - гипотенуза, m - минимальная сумма расстояний от внутренней точки до вершин треугольника.
Отсюда сразу видно, что при (m/c)^2 = 7/2; sin(2*Ф) >1; чего быть не может.
Отношение (m/c)^2 максимально равно 1 + √3/2 при Ф = 45 градусов, это примерно 1,866, что почти в два раза меньше, чем 7/2