М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
2comS
2comS
02.03.2022 09:39 •  Геометрия

Гипотенуза прямоугольного треугольника равна (корень из 2). найдите углы треугольника, зная, что наименьшее возможное значение суммы расстояния от точки внутри треугольника до его вершин равно (корень из 7).

👇
Ответ:
kseniaksu1
kseniaksu1
02.03.2022

На координатной плоскости есть окружность радиусом √2/2, с центром в начале координат. На отрезке, диаметре этой окружности, с концами А (0, √2/2) и В (0,-√2/2) построен равносторонний треугольник АВС1.

Его третья вершина лежит в точке С1 (√6/2,0).

Окружность с центром в этой точке и радиусом √7, (если есть решение) пересекает первую окружность в двух точках, симметричных относительно оси X. Координаты точки С в верхней полуплоскости (то есть y>0) находятся так.

x^2 + y^2 = 1/2;

(x - √6/2)^2 + y^2 = 7;

Так вот, у этой системы НЕТ решения, потому что 

√6/2 + √2/2 < √7;

То есть эти окружности не пересекаются.

Поэтому при любом угле треугольника сумма расстояний от вершин до точки Ферма (то есть наименьшее возможное значение этой суммы) будет МЕНЬШЕ √7. 

 

Не похоже, что я где то ошибся, но все может быть, проверьте.

Теорию точки Ферма (она же точка Торичелли) в треугольниках я тут излагать не стану. Достаточно понимать, что для прямоугольного треугольника она СУЩЕСТВУЕТ и лежит внутри треугольника. 

Расстояние от вершины С, лежащей на окружности  x^2 + y^2 = 1/2, до точки С1 ОБЯЗАТЕЛЬНО должно равняться заданному в задаче √7.

(Может, в условии другое число, например, гипотенуза √3, или нвр = √5)

 

Кстати, для прямоугольного треугольника довольно легко из теоремы косинусов получить соотношение

m^2 = c^2*(1 + (√3/2)*sin(2*Ф))

где Ф - острый угол треугольника, с - гипотенуза, m - минимальная сумма расстояний от внутренней точки до вершин треугольника.

Отсюда сразу видно, что при (m/c)^2 = 7/2; sin(2*Ф) >1; чего быть не может.

Отношение (m/c)^2 максимально равно 1 + √3/2 при Ф = 45 градусов, это примерно 1,866, что почти в два раза меньше, чем 7/2

4,8(16 оценок)
Открыть все ответы
Ответ:
tuiyty
tuiyty
02.03.2022
Начнем с самого простого:
Сторона правильного шестиугольника равна радиусу описанной около него окружности (свойство). Но можно и так: диагонали правильного шестиугольника разбивают описанную окружность на 6 равных равносторонних треугольника (см. рисунок). Поэтому сторона этого шестиугольника равна радиусу описанной окружности.
Rш=10см.
Диагональ правильного четырехугольника (квадрата) равна диаметру описанной около него окружности (свойство). D=20см.
Тогда его сторона равна Rк= 10√2см.
Сторона правильного треугольника равна  R*√3 (формула). Или в нашем случае 10√3.
Но можно и без формулы: по теореме косинусов.
a² = 2*R²-2R²*Cos120° или a²=200*(1+1/2) = 100*3. a=√300 = 10√3см.
ответ: сторона треугольника равна 10√3см, четырехугольника10√2см и шестиугольника 10см.

Радиус окружности равен 10см .найдите стороны вписанного в окружность правильного треугольника ,прав
4,4(29 оценок)
Ответ:
the26
the26
02.03.2022

1)г

2)Трикутники АВВ1 і АСС1 подібні за трьома кутами ( два при паралельних прямих і третій А спільний) отже

АС/АВ=СС1/ВВ1=11/(9+11) звідси

ВВ1=20*СС1/11=20*8,1/11=162/11

3)Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость.

В нашем случае проекциями данного нам отрезка на плоскости - это отрезки, соединяющие концы данного отрезка на плоскости и перпендикуляра, опущенного на данную плоскость.Но плоскости перпендикулярны, значит эти перпендикуляры - это расстояния от концов отрезка до линии пересечения плоскостей. То есть проекцией отрезка АВ на плоскость α будет отрезок АВ1,а углом между отрезком АВ и плоскостью α будет угол ВАВ1. Соответственно проекцией отрезка АВ на плоскость β будет отрезок ВА1,а углом между отрезком АВ и плоскостью β будет угол АВА1.

Синус угла ВАВ1 равен отношению противолежащего катета ВВ1 к гипотенузе AB, то есть Sin(ВАВ1)=12/24=1/2. Значит угол между отрезком АВ и плоскостью α равен 30°.

Синус угла АВА1 равен отношению противолежащего катета АА1 к гипотенузе AB, то есть Sin(АВА1)=12√2/24=√2/2. Значит угол между отрезком АВ и плоскостью α равен 45°.

ответ: Углы, образованные отрезком с плоскостями равны 30° и 45°.

4)находим высоту, проведенную к стороне 14

она равна 12( можно найти через формулу Герона площадь, а затем поделить на половину стороны 14см)

ну а дальше расстояние равно гипотенузе с катетами 12 и 16 и равна 20см

5)1. Проведем перпендикуляры из точек С и Д на АВ. Обозначим их СК и ДКПо условию

угол СКД=45.

2. Из треуг. АВС СК - высота правильного треугольника

СК=АВ*sqrt {3}/2=6

3. В треуг. АВД ДК - высота, опущенная на основание равнобедренного треугольника. Как известно, она совпадает с медианой.

АК= АВ/2= 2sqrt {3}

Из прямоуг. трег. АКД по теореме Пифагора

ДК= sqrt ( АД^2-АК^2)= sqrt( 14-12)= sqrt2

4 В треугольнике СКД СК=6, СД=sqrt2 . Угол СКД= 45

По теореме косинусов

СД^2=36+2-2*6*sqrt2*сos 45=26

СД=корень из 26

Объяснение:

4,8(61 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ